Advertisement

Breast Cancer Research and Treatment

, Volume 133, Issue 3, pp 1009–1024 | Cite as

Progression of ductal carcinoma in situ to invasive breast cancer is associated with gene expression programs of EMT and myoepithelia

  • Erik S. Knudsen
  • Adam Ertel
  • Elai Davicioni
  • Jessica Kline
  • Gordon F. Schwartz
  • Agnieszka K. WitkiewiczEmail author
Preclinical Study

Abstract

Ductal carcinoma in situ (DCIS) is a precursor lesion that can gives rise to invasive breast cancer (IBC). It has been proposed that both the nature of the lesion and the tumor microenvironment play key roles in progression to IBC. Here, laser capture microdissected tissue from pure DCIS and pure IBC were employed to define key gene expression profiles in either the epithelial or stromal compartment associated with disease progression. Each tissue had distinct gene expression profiles, and a DCIS/IBC classifier accurately distinguished DCIS versus IBC in multiple independent data sets. However, contrary to other studies that profiled DCIS associated with invasive disease, we found that the most significant alterations in gene expression were observed in the epithelial compartment rather than in the stroma. In particular, genes associated with epithelial-to-mesenchymal transition and myoepithelial cell-specific genes were enriched in invasive cancer relative to pure DCIS. Such alterations in transcript levels were associated with all subtypes of breast cancer, but were particularly indicative of poor outcome in ER-negative breast cancer. Together, these studies indicate that lesion-specific differences in gene expression associated with invasive phenotype are particularly relevant in the progression of DCIS to invasive breast cancer.

Keywords

Ductal carcinoma in situ Invasive breast cancer Disease progression EMT 

Notes

Conflict of interest

Authors Knudsen, Ertel, Kline, Schwartz, and Witkiewicz declare that they have no conflict of interest. Author Dr. Elai Davicioni declares remuneration and stock ownership in GenomeDx Biosciences, Inc.

Supplementary material

10549_2011_1894_MOESM1_ESM.pdf (160 kb)
Supplementary material 1 (PDF 160 kb)
10549_2011_1894_MOESM2_ESM.csv (130 kb)
Supplementary material 2 (CSV 130 kb)
10549_2011_1894_MOESM3_ESM.csv (25 kb)
Supplementary material 3 (CSV 24 kb)
10549_2011_1894_MOESM4_ESM.csv (14 kb)
Supplementary material 4 (CSV 13 kb)

References

  1. 1.
    Leonard GD, Swain SM (2004) Ductal carcinoma in situ, complexities and challenges. J Natl Cancer Inst 96(12):906–920PubMedCrossRefGoogle Scholar
  2. 2.
    Collins LC, Tamimi RM, Baer HJ, Connolly JL, Colditz GA, Schnitt SJ (2005) Outcome of patients with ductal carcinoma in situ untreated after diagnostic biopsy: results from the Nurses’ Health Study. Cancer 103(9):1778–1784PubMedCrossRefGoogle Scholar
  3. 3.
    Wang SY, Shamliyan T, Virnig BA, Kane R (2011) Tumor characteristics as predictors of local recurrence after treatment of ductal carcinoma in situ: a meta-analysis. Breast Cancer Res Treat 127(1):1–14PubMedCrossRefGoogle Scholar
  4. 4.
    Schnitt SJ (2010) Local outcomes in ductal carcinoma in situ based on patient and tumor characteristics. J Natl Cancer Inst Monogr 2010(41):158–161PubMedCrossRefGoogle Scholar
  5. 5.
    Tsikitis VL, Chung MA (2006) Biology of ductal carcinoma in situ classification based on biologic potential. Am J Clin Oncol 29(3):305–310PubMedCrossRefGoogle Scholar
  6. 6.
    Sakorafas GH, Farley DR, Peros G (2008) Recent advances and current controversies in the management of DCIS of the breast. Cancer Treat Rev 34(6):483–497PubMedCrossRefGoogle Scholar
  7. 7.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752PubMedCrossRefGoogle Scholar
  8. 8.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874PubMedCrossRefGoogle Scholar
  9. 9.
    Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M, Glas AM, d’Assignies MS, Bergh J, Lidereau R, Ellis P, Harris A, Bogaerts J, Therasse P, Floore A, Amakrane M, Piette F, Rutgers E, Sotiriou C, Cardoso F, Piccart MJ (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98(17):1183–1192PubMedCrossRefGoogle Scholar
  10. 10.
    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826PubMedCrossRefGoogle Scholar
  11. 11.
    Ma XJ, Hilsenbeck SG, Wang W, Ding L, Sgroi DC, Bender RA, Osborne CK, Allred DC, Erlander MG (2006) The HOXB13:IL17BR expression index is a prognostic factor in early-stage breast cancer. J Clin Oncol 24(28):4611–4619PubMedCrossRefGoogle Scholar
  12. 12.
    Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, Payette T, Pistone M, Stecker K, Zhang BM, Zhou YX, Varnholt H, Smith B, Gadd M, Chatfield E, Kessler J, Baer TM, Erlander MG, Sgroi DC (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 100(10):5974–5979. doi: 10.1073/pnas.0931261100 PubMedCrossRefGoogle Scholar
  13. 13.
    Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11(1):R7PubMedCrossRefGoogle Scholar
  14. 14.
    Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6(1):17–32PubMedCrossRefGoogle Scholar
  15. 15.
    Holland R, Peterse JL, Millis RR, Eusebi V, Faverly D, van de Vijver MJ, Zafrani B (1994) Ductal carcinoma in situ: a proposal for a new classification. Semin Diagn Pathol 11(3):167–180PubMedGoogle Scholar
  16. 16.
    Elston EW, Ellis IO (1993) Method for grading breast cancer. J Clin Pathol 46(2):189–190PubMedCrossRefGoogle Scholar
  17. 17.
    Moeder CB, Giltnane JM, Harigopal M, Molinaro A, Robinson A, Gelmon K, Huntsman D, Camp RL, Rimm DL (2007) Quantitative justification of the change from 10% to 30% for human epidermal growth factor receptor 2 scoring in the American Society of Clinical Oncology/College of American Pathologists guidelines: tumor heterogeneity in breast cancer and its implications for tissue microarray based assessment of outcome. J Clin Oncol 25(34):5418–5425PubMedCrossRefGoogle Scholar
  18. 18.
    Fuller AP, Palmer-Toy D, Erlander MG, Sgroi DC (2003) Laser capture microdissection and advanced molecular analysis of human breast cancer. J Mammary Gland Biol Neoplasia 8(3):335–345PubMedCrossRefGoogle Scholar
  19. 19.
    Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc Ser B 64(3):479–498. doi: 10.1111/1467-9868.00346 CrossRefGoogle Scholar
  20. 20.
    Gruvberger-Saal SK, Bendahl PO, Saal LH, Laakso M, Hegardt C, Eden P, Peterson C, Malmstrom P, Isola J, Borg A, Ferno M (2007) Estrogen receptor beta expression is associated with tamoxifen response in ERalpha-negative breast carcinoma. Clin Cancer Res 13(7):1987–1994. doi: 10.1158/1078-0432.CCR-06-1823 PubMedCrossRefGoogle Scholar
  21. 21.
    Zaravinos A, Lambrou GI, Boulalas I, Delakas D, Spandidos DA (2010) Identification of common differentially expressed genes in urinary bladder cancer. PLoS One 6(4):e18135. doi: 10.1371/journal.pone.0018135 CrossRefGoogle Scholar
  22. 22.
    Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460(7254):473–478. doi: 10.1038/nature08162 PubMedGoogle Scholar
  23. 23.
    Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19(3):368–375PubMedCrossRefGoogle Scholar
  24. 24.
    Hackstadt AJ, Hess AM (2009) Filtering for increased power for microarray data analysis. BMC Bioinform 10:11. doi: 10.1186/1471-2105-10-11 CrossRefGoogle Scholar
  25. 25.
    Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci 98(9):5116–5121. doi: 10.1073/pnas.091062498 PubMedCrossRefGoogle Scholar
  26. 26.
    Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, Hartwell K, Onder TT, Gupta PB, Evans KW, Hollier BG, Ram PT, Lander ES, Rosen JM, Weinberg RA, Mani SA (2010) Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA 107(35):15449–15454. doi: 10.1073/pnas.1004900107 PubMedCrossRefGoogle Scholar
  27. 27.
    Grigoriadis A, Mackay A, Reis-Filho JS, Steele D, Iseli C, Stevenson BJ, Jongeneel CV, Valgeirsson H, Fenwick K, Iravani M, Leao M, Simpson AJ, Strausberg RL, Jat PS, Ashworth A, Neville AM, O’Hare MJ (2006) Establishment of the epithelial-specific transcriptome of normal and malignant human breast cells based on MPSS and array expression data. Breast Cancer Res 8(5):R56. doi: 10.1186/bcr1604 PubMedCrossRefGoogle Scholar
  28. 28.
    Kim H, Watkinson J, Varadan V, Anastassiou D (2010) Multi-cancer computational analysis reveals invasion-associated variant of desmoplastic reaction involving INHBA, THBS2 and COL11A1. BMC Med Genomics 3:51. doi: 10.1186/1755-8794-3-51 PubMedCrossRefGoogle Scholar
  29. 29.
    Schuetz CS, Bonin M, Clare SE, Nieselt K, Sotlar K, Walter M, Fehm T, Solomayer E, Riess O, Wallwiener D, Kurek R, Neubauer HJ (2006) Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Cancer Res 66(10):5278–5286PubMedCrossRefGoogle Scholar
  30. 30.
    Hannemann J, Velds A, Halfwerk JB, Kreike B, Peterse JL, van de Vijver MJ (2006) Classification of ductal carcinoma in situ by gene expression profiling. Breast Cancer Res 8(5):R61. doi: 10.1186/bcr1613 PubMedCrossRefGoogle Scholar
  31. 31.
    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550. doi: 10.1073/pnas.0506580102 PubMedCrossRefGoogle Scholar
  32. 32.
    Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi: 10.1038/nprot.2008.211 PubMedCrossRefGoogle Scholar
  33. 33.
    Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R (2007) NCBI GEO: mining tens of millions of expression profiles–database and tools update. Nucleic Acids Res 35(suppl_1):D760–D765. doi: 10.1093/nar/gkl887 PubMedCrossRefGoogle Scholar
  34. 34.
    Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, Abeygunawardena N, Holloway E, Kapushesky M, Kemmeren P, Lara GG, Oezcimen A, Rocca-Serra P, Sansone SA (2003) ArrayExpress—a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 31(1):68–71PubMedCrossRefGoogle Scholar
  35. 35.
    Ertel A, Dean JL, Rui H, Liu C, Witkiewicz AK, Knudsen KE, Knudsen ES (2010) RB-pathway disruption in breast cancer: differential association with disease subtypes, disease-specific prognosis and therapeutic response. Cell Cycle 9(20):4153–4163PubMedCrossRefGoogle Scholar
  36. 36.
    Muggerud AA, Hallett M, Johnsen H, Kleivi K, Zhou W, Tahmasebpoor S, Amini RM, Botling J, Borresen-Dale AL, Sorlie T, Warnberg F (2010) Molecular diversity in ductal carcinoma in situ (DCIS) and early invasive breast cancer. Mol Oncol 4(4):357–368PubMedCrossRefGoogle Scholar
  37. 37.
    Liotta LA, Stetler-Stevenson WG (1991) Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res 51(18 Suppl):5054s–5059sPubMedGoogle Scholar
  38. 38.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70PubMedCrossRefGoogle Scholar
  39. 39.
    Guarino M (2007) Epithelial-mesenchymal transition and tumour invasion. Int J Biochem Cell Biol 39(12):2153–2160PubMedCrossRefGoogle Scholar
  40. 40.
    Jones C, Mackay A, Grigoriadis A, Cossu A, Reis-Filho JS, Fulford L, Dexter T, Davies S, Bulmer K, Ford E, Parry S, Budroni M, Palmieri G, Neville AM, O’Hare MJ, Lakhani SR (2004) Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Res 64(9):3037–3045PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Erik S. Knudsen
    • 2
    • 3
  • Adam Ertel
    • 2
    • 3
    • 4
  • Elai Davicioni
    • 6
  • Jessica Kline
    • 1
  • Gordon F. Schwartz
    • 2
    • 5
  • Agnieszka K. Witkiewicz
    • 1
    • 2
    Email author
  1. 1.Department of PathologyThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaUSA
  3. 3.Department of Cancer BiologyThomas Jefferson UniversityPhiladelphiaUSA
  4. 4.Cancer Genomics UnitThomas Jefferson UniversityPhiladelphiaUSA
  5. 5.Department of SurgeryThomas Jefferson UniversityPhiladelphiaUSA
  6. 6.GenomeDx Biosciences Inc.VancouverCanada

Personalised recommendations