Breast Cancer Research and Treatment

, Volume 132, Issue 1, pp 215–223

Phase 2 study of neoadjuvant treatment with NOV-002 in combination with doxorubicin and cyclophosphamide followed by docetaxel in patients with HER-2 negative clinical stage II–IIIc breast cancer

  • A. J. Montero
  • C. M. Diaz-Montero
  • Y. E. Deutsch
  • J. Hurley
  • L. G. Koniaris
  • T. Rumboldt
  • S. Yasir
  • M. Jorda
  • E. Garret-Mayer
  • E. Avisar
  • J. Slingerland
  • O. Silva
  • C. Welsh
  • K. Schuhwerk
  • P. Seo
  • M. D. Pegram
  • S. Glück
Clinical trial


NOV-002 (a formulation of disodium glutathione disulfide) modulates signaling pathways involved in tumor cell proliferation and metastasis and enhances anti-tumor immune responsiveness in tumor models. The addition of NOV-002 to chemotherapy has been shown to increase anti-tumor efficacy in animal models and some early phase oncology trials. We evaluated the clinical effects of NOV-002 in primary breast cancer, whether adding NOV-002 to standard preoperative chemotherapy increased pathologic complete response rates (pCR) at surgery, and determined whether NOV-002 mitigated hematologic toxicities of chemotherapy and whether levels of myeloid derived suppressor cells (MDSC) were predictive of response. Forty-one women with newly diagnosed stages II–IIIc HER-2 negative breast cancer received doxorubicin-cyclophosphamide followed by docetaxel (AC → T) every 3 weeks and concurrent daily NOV-002 injections. The trial was powered to detect a doubling of pCR rate from 16 to 32% with NOV-002 plus AC → T (α = 0.05, β = 80%). Weekly complete blood counts were obtained as well as circulating MDSC levels on day 1 of each cycle were quantified. Of 39 patients with 40 evaluable tumors, 15 achieved a pCR (38%), meeting the primary endpoint of the trial. Concurrent NOV-002 resulted in pCR rates for AC → T chemotherapy higher than previously reported. Patients with lower levels of circulating MDSCs at baseline and on the last cycle of chemotherapy had significantly higher probability of a pCR (P = 0.02). Further evaluation of NOV-002 in a randomized study is warranted.


Breast cancer Neoadjuvant Phase 2 NOV-002 Glutathione analog MDSC Myeloid derived suppressor cells Pathologic complete response Anthracycline Taxane 


  1. 1.
    Cabello CM, Lamore SD, Bair WB III, Davis AL, Azimian SM, Wondrak GT (2011) DCPIP (2,6-dichlorophenolindophenol) as a genotype-directed redox chemotherapeutic targeting NQO1*2 breast carcinoma. Free Radic Res 45(3):276–292PubMedCrossRefGoogle Scholar
  2. 2.
    Montero AJ, Jassem J (2011) Cellular redox pathways as a therapeutic target in the treatment of cancer. Drugs 71(11):1385–1396PubMedCrossRefGoogle Scholar
  3. 3.
    Wondrak GT (2009) Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal 11(12):3013–3069PubMedCrossRefGoogle Scholar
  4. 4.
    Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, Sundaresan M, Finkel T, Goldschmidt-Clermont PJ (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275(5306):1649–1652PubMedCrossRefGoogle Scholar
  5. 5.
    Laurent A, Nicco C, Chereau C, Goulvestre C, Alexandre J, Alves A, Levy E, Goldwasser F, Panis Y, Soubrane O et al (2005) Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65(3):948–956PubMedGoogle Scholar
  6. 6.
    Rodrigues MS, Reddy MM, Sattler M (2008) Cell cycle regulation by oncogenic tyrosine kinases in myeloid neoplasias: from molecular redox mechanisms to health implications. Antioxid Redox Signal 10(10):1813–1848PubMedCrossRefGoogle Scholar
  7. 7.
    Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10(8):1343–1374PubMedCrossRefGoogle Scholar
  8. 8.
    Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J et al (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10(3):241–252PubMedCrossRefGoogle Scholar
  9. 9.
    Glorieux C, Dejeans N, Sid B, Beck R, Calderon PB, Verrax J (2011) Catalase overexpression in mammary cancer cells leads to a less aggressive phenotype and an altered response to chemotherapy. Biochem Pharmacol 82(10):1384–1390PubMedCrossRefGoogle Scholar
  10. 10.
    He C, Tamimi RM, Hankinson SE, Hunter DJ, Han J (2009) A prospective study of genetic polymorphism in MPO, antioxidant status, and breast cancer risk. Breast Cancer Res Treat 113(3):585–594PubMedCrossRefGoogle Scholar
  11. 11.
    Yang JC, Lu MC, Lee CL, Chen GY, Lin YY, Chang FR, Wu YC (2011) Selective targeting of breast cancer cells through ROS-mediated mechanisms potentiates the lethality of paclitaxel by a novel diterpene, gelomulide K. Free Radic Biol Med 51(3):641–657PubMedCrossRefGoogle Scholar
  12. 12.
    Townsend DM, He L, Hutchens S, Garrett TE, Pazoles CJ, Tew KD (2008) NOV-002, a glutathione disulfide mimetic, as a modulator of cellular redox balance. Cancer Res 68(8):2870–2877PubMedCrossRefGoogle Scholar
  13. 13.
    Townsend DM, Pazoles CJ, Tew KD (2008) NOV-002, a mimetic of glutathione disulfide. Expert Opin Investig Drugs 17(7):1075–1083PubMedCrossRefGoogle Scholar
  14. 14.
    Townsend DM, Tew KD (2009) Pharmacology of a mimetic of glutathione disulfide, NOV-002. Biomed Pharmacother 63(2):75–78PubMedCrossRefGoogle Scholar
  15. 15.
    Brigelius-Flohe R (2006) Glutathione peroxidases and redox-regulated transcription factors. Biol Chem 387(10–11):1329–1335PubMedCrossRefGoogle Scholar
  16. 16.
    Giles GI (2006) The redox regulation of thiol dependent signaling pathways in cancer. Curr Pharm Des 12(34):4427–4443PubMedCrossRefGoogle Scholar
  17. 17.
    Tew KD, Manevich Y, Grek C, Xiong Y, Uys J, Townsend DM (2011) The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer. Free Radic Biol Med 51(2):299–313PubMedCrossRefGoogle Scholar
  18. 18.
    Townsend DM (2007) S-glutathionylation: indicator of cell stress and regulator of the unfolded protein response. Mol Interv 7(6):313–324PubMedCrossRefGoogle Scholar
  19. 19.
    Gumireddy K, Pazoles C, Vulfson E (2009) Inhibition of tumor cell invasion and ErbB2/PI3 K signalling pathways by the glutathione disulfide-mimetic NOV-002. Proceedings of the 100th annual meeting of the American Association for Cancer Research, 2009 (Abstract)Google Scholar
  20. 20.
    Townsend DM, Bowers R, Pazoles CJ (2009) NOV-002 suppresses tumor cell growth by modulating redox-sensitive cell signaling. Mol Cancer Ther 8(12 Suppl. 1) (Abstract C30)Google Scholar
  21. 21.
    Bowers R, Townsend D, Manevich Y (2010) The redox modulator NOV-002 inhibits proliferation of ovariantumor cells but increases proliferation of myeloid cells. Proceedings of the 101st annual meeting of the American Association for Cancer Research, 2010 (Abstract)Google Scholar
  22. 22.
    Montero AJ, Naga O, Xu M (2009) Nov-002, a cellular redox modulator, enhances the antitumor effect of adoptively transferred T cells in a murine melanoma model. Mol Cancer Ther 8(12 Suppl. 1) (Abstract C238)Google Scholar
  23. 23.
    Krasner CN, Seiden MV, Penson RT (2008) NOV-002 plus carboplatin in platinum-resistant ovarian cancer. J Clin Oncol 26 (Abstract)Google Scholar
  24. 24.
    Bear HD, Anderson S, Brown A, Smith R, Mamounas EP, Fisher B, Margolese R, Theoret H, Soran A, Wickerham DL et al (2003) The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol 21(22):4165–4174PubMedCrossRefGoogle Scholar
  25. 25.
    Bear HD, Anderson S, Smith RE, Geyer CE Jr, Mamounas EP, Fisher B, Brown AM, Robidoux A, Margolese R, Kahlenberg MS et al (2006) Sequential preoperative or postoperative docetaxel added to preoperative doxorubicin plus cyclophosphamide for operable breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol 24(13):2019–2027PubMedCrossRefGoogle Scholar
  26. 26.
    Symmans WF, Peintinger F, Hatzis C, Rajan R, Kuerer H, Valero V, Assad L, Poniecka A, Hennessy B, Green M et al (2007) Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol 25(28):4414–4422PubMedCrossRefGoogle Scholar
  27. 27.
    Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58(1):49–59PubMedCrossRefGoogle Scholar
  28. 28.
    Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L, Rosato A, Francescato S, Basso G, Zanovello P, Onicescu G et al. (2011) A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood (Journal Article)Google Scholar
  29. 29.
    Koyama T, Chen H (2008) Proper inference from Simon’s two-stage designs. Stat Med 27(16):3145–3154PubMedCrossRefGoogle Scholar
  30. 30.
    Straver ME, Rutgers EJ, Rodenhuis S, Linn SC, Loo CE, Wesseling J, Russell NS, Oldenburg HS, Antonini N, Vrancken Peeters MT (2010) The relevance of breast cancer subtypes in the outcome of neoadjuvant chemotherapy. Ann Surg Oncol 17(9):2411–2418PubMedCrossRefGoogle Scholar
  31. 31.
    Tolaney SM, Najita J, Winer EP, Burstein HJ (2008) Lymphopenia associated with adjuvant anthracycline/taxane regimens. Clin Breast Cancer 8(4):352–356PubMedCrossRefGoogle Scholar
  32. 32.
    Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, Hess K, Lecocke M, Metivier J, Booser D, Booser D, Ibrahim N et al (2004) Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol 22(12):2284–2293PubMedCrossRefGoogle Scholar
  33. 33.
    Carey LA, Metzger R, Dees EC, Collichio F, Sartor CI, Ollila DW, Klauber-DeMore N, Halle J, Sawyer L, Moore DT et al (2005) American joint committee on cancer tumor–node–metastasis stage after neoadjuvant chemotherapy and breast cancer outcome. J Natl Cancer Inst 97(15):1137–1142PubMedCrossRefGoogle Scholar
  34. 34.
    Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER, Wickerham DL, Begovic M, DeCillis A, Robidoux A et al (1998) Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol 16(8):2672–2685PubMedGoogle Scholar
  35. 35.
    Gonzalez-Angulo AM, McGuire SE, Buchholz TA, Tucker SL, Kuerer HM, Rouzier R, Kau SW, Huang EH, Morandi P, Ocana A et al (2005) Factors predictive of distant metastases in patients with breast cancer who have a pathologic complete response after neoadjuvant chemotherapy. J Clin Oncol 23(28):7098–7104PubMedCrossRefGoogle Scholar
  36. 36.
    Heys SD, Sarkar T, Hutcheon AW (2005) Primary docetaxel chemotherapy in patients with breast cancer: impact on response and survival. Breast Cancer Res Treat 90(2):169–185PubMedCrossRefGoogle Scholar
  37. 37.
    Kuroi K, Toi M, Tsuda H, Kurosumi M, Akiyama F (2006) Issues in the assessment of the pathologic effect of primary systemic therapy for breast cancer. Breast Cancer 13(1):38–48PubMedCrossRefGoogle Scholar
  38. 38.
    Mazouni C, Kau SW, Frye D, Andre F, Kuerer HM, Buchholz TA, Symmans WF, Anderson K, Hess KR, Gonzalez-Angulo AM et al (2007) Inclusion of taxanes, particularly weekly paclitaxel, in preoperative chemotherapy improves pathologic complete response rate in estrogen receptor-positive breast cancers. Ann Oncol 18(5):874–880PubMedCrossRefGoogle Scholar
  39. 39.
    Glück S, Ross JS, Royce M, McKenna EF, Jr., Perou CM, Avisar E, Wu L (2011) TP53 genomics predict higher clinical and pathologic tumor response in operable early-stage breast cancer treated with docetaxel-capecitabine ± trastuzumab. Breast Cancer Res Treat (Journal Article)Google Scholar
  40. 40.
    Glück S, McKenna EF Jr, Royce M (2008) XeNA: capecitabine plus docetaxel, with or without trastuzumab, as preoperative therapy for early breast cancer. Int J Med Sci 5(6):341–346PubMedCrossRefGoogle Scholar
  41. 41.
    von Minckwitz G, Raab G, Caputo A, Schutte M, Hilfrich J, Blohmer JU, Gerber B, Costa SD, Merkle E, Eidtmann H et al (2005) Doxorubicin with cyclophosphamide followed by docetaxel every 21 days compared with doxorubicin and docetaxel every 14 days as preoperative treatment in operable breast cancer: the GEPARDUO study of the German Breast Group. J Clin Oncol 23(12):2676–2685CrossRefGoogle Scholar
  42. 42.
    Wolmark N, Wang J, Mamounas E, Bryant J, Fisher B (2001) Preoperative chemotherapy in patients with operable breast cancer: nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. J Natl Cancer Inst Monogr 2001(30):96–102CrossRefGoogle Scholar
  43. 43.
    Guarneri V, Broglio K, Kau SW, Cristofanilli M, Buzdar AU, Valero V, Buchholz T, Meric F, Hortobagyi GN et al (2006) Prognostic value of pathologic complete response after primary chemotherapy in relation to hormone receptor status and other factors. J Clin Oncol 24(7):1037–1044PubMedCrossRefGoogle Scholar
  44. 44.
    Montero A, Fossella F, Hortobagyi G, Valero V (2005) Docetaxel for treatment of solid tumours: a systematic review of clinical data. Lancet Oncol 6(4):229–239PubMedCrossRefGoogle Scholar
  45. 45.
    Ruscoe JE, Rosario LA, Wang T, Gate L, Arifoglu P, Wolf CR, Henderson CJ, Ronai Z, Tew KD (2001) Pharmacologic or genetic manipulation of glutathione S-transferase P1–1 (GSTpi) influences cell proliferation pathways. J Pharmacol Exp Ther 298(1):339–345PubMedGoogle Scholar
  46. 46.
    Pazoles CJ, Gerstein H (2006) NOV-002, a chemoprotectant/immunomodulator, added to first-line carboplatin/paclitaxel in advanced non-small cell lung cancer (NSCLC): a randomized phase 1/2, open-label, controlled study. J Clin Oncol 24(18S): Pt 1(June 20 Suppl): 668S, (Abstract #17021)Google Scholar
  47. 47.
    Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13(1):54–61PubMedCrossRefGoogle Scholar
  48. 48.
    Tesniere A, Apetoh L, Ghiringhelli F, Joza N, Panaretakis T, Kepp O, Schlemmer F, Zitvogel L, Kroemer G (2008) Immunogenic cancer cell death: a key-lock paradigm. Curr Opin Immunol 20(5):504–511PubMedCrossRefGoogle Scholar
  49. 49.
    Mandruzzato S, Solito S, Falisi E, Francescato S, Chiarion-Sileni V, Mocellin S, Zanon A, Rossi CR, Nitti D, Bronte V (2009) IL4Ralpha+ myeloid-derived suppressor cell expansion in cancer patients. J Immunol 182(10):6562–6568PubMedCrossRefGoogle Scholar
  50. 50.
    Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 59(10):1593–1600PubMedCrossRefGoogle Scholar
  51. 51.
    Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 60(10):1419–1430PubMedCrossRefGoogle Scholar
  52. 52.
    Finkelstein SE, Carey T, Fricke I, Yu D, Goetz D, Gratz M, Dunn M, Urbas P, Daud A, DeConti R et al (2010) Changes in dendritic cell phenotype after a new high-dose weekly schedule of interleukin-2 therapy for kidney cancer and melanoma. J Immunother 33(8):817–827PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • A. J. Montero
    • 1
  • C. M. Diaz-Montero
    • 1
  • Y. E. Deutsch
    • 1
  • J. Hurley
    • 1
  • L. G. Koniaris
    • 2
  • T. Rumboldt
    • 3
  • S. Yasir
    • 1
  • M. Jorda
    • 1
  • E. Garret-Mayer
    • 3
  • E. Avisar
    • 1
  • J. Slingerland
    • 1
  • O. Silva
    • 1
  • C. Welsh
    • 1
  • K. Schuhwerk
    • 4
  • P. Seo
    • 1
  • M. D. Pegram
    • 1
  • S. Glück
    • 1
  1. 1.Sylvester Comprehensive Cancer CenterUniversity of MiamiMiamiUSA
  2. 2.Jefferson University HospitalPhiladelphiaUSA
  3. 3.Hollings Cancer CenterMedical University of South CarolinaCharlestonUSA
  4. 4.Novelos Therapeutics Inc.NewtonUSA

Personalised recommendations