Breast Cancer Research and Treatment

, Volume 133, Issue 3, pp 979–995 | Cite as

A CD44/CD24+ phenotype is a poor prognostic marker in early invasive breast cancer

  • Mohamed A. H. Ahmed
  • Mohammed A. Aleskandarany
  • Emad A. Rakha
  • Radwa Z. A. Moustafa
  • Ahmed Benhasouna
  • Christopher Nolan
  • Andrew R. Green
  • Mohammad Ilyas
  • Ian O. Ellis
Preclinical study


A CD44/CD24+ phenotype is a poor prognostic marker in early invasive breast cancer. Breast cancer cells with high CD44 and low or absent CD24 (i.e. CD44+CD24/low phenotype) are reported to have stem cell features. However, the clinical impact of CD24 and CD44 expression in tumours remains unclear. To explore the immunohistochemical expression of CD44 and CD24 (individually and combined) and their clinical value as prognostic and predictive markers. Immunohistochemical expression of CD24 and CD44 was studied in a large series of early primary invasive breast cancer tumours (n = 1036) prepared as a tissue microarray. Associations between the expression of each marker individually and in combination and clinico-pathological, molecular variables and patients’ outcome were investigated. CD24 cytoplasmic expression was significantly associated with poor prognostic variables including high tumour grade, ER−, PR−, HER2+, p53+ and triple negative (TN) phenotype; P < 0.05. However, CD24 expression was not significantly associated with patients’ outcome. Conversely, CD44 expression was associated with favourable prognostic criteria including lower Nottingham prognostic index, ER+, HER2− and luminal phenotype; P < 0.05. Moreover, CD44 expression was found to be an independent predictor of good prognosis. In combination, the CD44+/CD24 phenotype was associated with the most favourable outcome (84 and 80% 10 year breast cancer survival [BCSS] and metastasis free survival [MFS], respectively). Contrasting this, the CD44/CD24+ phenotype was associated with the most dismal outcome (62 and 60% 10 years BCSS and MFS, respectively). CD24 and CD44 expression can individually yield prognostic data in breast cancer, but importantly, when both markers are considered; the CD44+/CD24 phenotype had the best prognosis, while the CD44/CD24+ phenotype had the worst prognosis. This shows that the relationship between basic cell biology and clinical behaviour is not always straightforward and warrants further investigations of the true clinical impact of breast cancer stem cells.


CD24 CD44 Immunohistochemistry Stem Cells Breast Cancer Prognosis 



Androgen receptor


Breast cancer


Breast cancer-specific survival


Basal-like breast cancer




Cancer stem cells




Epidermal growth factor receptor


Enhanced chemiluminescence


Oestrogen receptor


Human epidermal growth factor receptor 2


Hazard ratio






Log rank


Metastasis free survival


Nottingham prognostic index


Phosphate buffered saline


Progesterone receptor


Reporting recommendations for tumour marker prognostic studies


Tris-buffered saline


Tissue microarray


Triple negative



We thank Professor Peter Altvoget for the generous gift of anti-CD24 (SWA11) antibody. We also thank the Ministry of Higher Education (Egypt) for funding Mohamed Ahmed and M. Aleskandarany.

Conflict of interest


Supplementary material

10549_2011_1865_MOESM1_ESM.tif (753 kb)
Supplementary Fig. 1: CD24 Nuclear expression. TMA core showing nuclear immunohistochemical expression of CD24; (A): X100, and (B): ×200. (C) and (D): Kaplan–Meier survival plot for patients’ BCSS and MFS for nuclear expression of CD24. Supplementary material 1 (EPS 2849 kb)
10549_2011_1865_MOESM2_ESM.doc (76 kb)
Supplementary material 2 (DOC 76 kb)
10549_2011_1865_MOESM3_ESM.doc (96 kb)
Supplementary material 3 (DOC 96 kb)


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi: 10.3322/caac.20107 PubMedCrossRefGoogle Scholar
  2. 2.
    Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  3. 3.
    Marx J (2003) Cancer research mutant stem cells may seed cancer. Science 301(5638):1308–1310. doi: 10.1126/science.301.5638.1308 PubMedCrossRefGoogle Scholar
  4. 4.
    Li W, Liu F, Lei T, Xu X, Liu B, Cui L, Wei J, Guo X, Lang R, Fan Y, Gu F, Tang P, Zhang X, Fu L (2010) The clinicopathological significance of CD44+/CD24−/low and CD24+ tumor cells in invasive micropapillary carcinoma of the breast. Pathol Res Pract 206(12):828–834. doi: 10.1016/j.prp.2010.09.008 PubMedCrossRefGoogle Scholar
  5. 5.
    Croker AK, Allan AL (2008) Cancer stem cells: implications for the progression and treatment of metastatic disease. J Cell Mol Med 12(2):374–390. doi: 10.1111/j.1582-4934.2007.00211.x PubMedCrossRefGoogle Scholar
  6. 6.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988. doi: 10.1073/pnas.0530291100 PubMedCrossRefGoogle Scholar
  7. 7.
    Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65(13):5506–5511. doi: 10.1158/0008-5472.CAN-05-0626 PubMedCrossRefGoogle Scholar
  8. 8.
    Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100(9):672–679. doi: 10.1093/jnci/djn123 PubMedCrossRefGoogle Scholar
  9. 9.
    Mylona E, Giannopoulou I, Fasomytakis E, Nomikos A, Magkou C, Bakarakos P, Nakopoulou L (2008) The clinicopathologic and prognostic significance of CD44+/CD24(−/low) and CD44−/CD24+ tumor cells in invasive breast carcinomas. Hum Pathol 39(7):1096–1102. doi: 10.1016/j.humpath.2007.12.003 PubMedCrossRefGoogle Scholar
  10. 10.
    Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H (2005) Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11(3):1154–1159PubMedGoogle Scholar
  11. 11.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst 97(16):1180–1184PubMedCrossRefGoogle Scholar
  12. 12.
    Abd El-Rehim DM, Ball G, Pinder SE, Rakha E, Paish C, Robertson JFR, Macmillan D, Blamey RW, Ellis IO (2005) High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer 116(3):340–350PubMedCrossRefGoogle Scholar
  13. 13.
    Rakha EA, Elsheikh SE, Aleskandarany MA, Habashi HO, Green AR, Powe DG, El-Sayed ME, Benhasouna A, Brunet JS, Akslen LA, Evans AJ, Blamey R, Reis-Filho JS, Foulkes WD, Ellis IO (2009) Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res 15(7):2302–2310. doi: 10.1158/1078-0432.CCR-08-2132 PubMedCrossRefGoogle Scholar
  14. 14.
    Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10(16):5367–5374PubMedCrossRefGoogle Scholar
  15. 15.
    Ahmed MA, Jackson D, Seth R, Robins A, Lobo DN, Tomlinson IP, Ilyas M (2010) CD24 is upregulated in inflammatory bowel disease and stimulates cell motility and colony formation. Inflamm Bowel Dis 16(5):795–803. doi: 10.1002/ibd.21134 PubMedCrossRefGoogle Scholar
  16. 16.
    Kristiansen G, Machado E, Bretz N, Rupp C, Winzer KJ, Konig AK, Moldenhauer G, Marme F, Costa J, Altevogt P (2010) Molecular and clinical dissection of CD24 antibody specificity by a comprehensive comparative analysis. Lab Invest 90(7):1102–1116. doi: 10.1038/labinvest.2010.70 PubMedCrossRefGoogle Scholar
  17. 17.
    McCarty KS Jr, Miller LS, Cox EB, Konrath J, McCarty KS Sr (1985) Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 109(8):716–721PubMedGoogle Scholar
  18. 18.
    Rakha EA, El-Sayed ME, Green AR, Paish EC, Powe DG, Gee J, Nicholson RI, Lee AH, Robertson JF, Ellis IO (2007) Biologic and clinical characteristics of breast cancer with single hormone receptor positive phenotype. J Clin Oncol 25(30):4772–4778PubMedCrossRefGoogle Scholar
  19. 19.
    Camp RL, Dolled-Filhart M, Rimm DL (2004) X-Tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10:7252–7259. doi: 10.1158/1078-0432.ccr-04-0713 Google Scholar
  20. 20.
    Ahmed MA, Al-Attar A, Kim J, Watson NF, Scholefield JH, Durrant LG, Ilyas M (2009) CD24 shows early upregulation and nuclear expression but is not a prognostic marker in colorectal cancer. J Clin Pathol 62(12):1117–1122. doi: 10.1136/jcp.2009.069310 PubMedCrossRefGoogle Scholar
  21. 21.
    Bernard-Marty C, Cardoso F, Piccart MJ (2004) Facts and controversies in systemic treatment of metastatic breast cancer. Oncologist 9(6):617–632. doi: 10.1634/theoncologist.9-6-617 PubMedCrossRefGoogle Scholar
  22. 22.
    Roche H, Vahdat LT (2011) Treatment of metastatic breast cancer: second line and beyond. Ann Oncol 22(5):1000–1010. doi: 10.1093/annonc/mdq429 PubMedCrossRefGoogle Scholar
  23. 23.
    Kristiansen G, Winzer KJ, Mayordomo E, Bellach J, Schluns K, Denkert C, Dahl E, Pilarsky C, Altevogt P, Guski H, Dietel M (2003) CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res 9(13):4906–4913PubMedGoogle Scholar
  24. 24.
    Lopez JI, Camenisch TD, Stevens MV, Sands BJ, McDonald J, Schroeder JA (2005) CD44 attenuates metastatic invasion during breast cancer progression. Cancer Res 65(15):6755–6763. doi: 10.1158/0008-5472.CAN-05-0863 PubMedCrossRefGoogle Scholar
  25. 25.
    Diaz LK, Zhou X, Wright ET, Cristofanilli M, Smith T, Yang Y, Sneige N, Sahin A, Gilcrease MZ (2005) CD44 expression is associated with increased survival in node-negative invasive breast carcinoma. Clin Cancer Res 11(9):3309–3314. doi: 10.1158/1078-0432.CCR-04-2184 PubMedCrossRefGoogle Scholar
  26. 26.
    Bankfalvi A, Terpe HJ, Breukelmann D, Bier B, Rempe D, Pschadka G, Krech R, Bocker W (1998) Gains and losses of CD44 expression during breast carcinogenesis and tumour progression. Histopathology 33(2):107–116PubMedCrossRefGoogle Scholar
  27. 27.
    Liu R, Wang X, Chen GY, Dalerba P, Gurney A, Hoey T, Sherlock G, Lewicki J, Shedden K, Clarke MF (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356(3):217–226. doi: 10.1056/NEJMoa063994 PubMedCrossRefGoogle Scholar
  28. 28.
    Alison MR, Lim SM, Nicholson LJ (2011) Cancer stem cells: problems for therapy? J Pathol 223(2):147–161. doi: 10.1002/path.2793 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Mohamed A. H. Ahmed
    • 1
    • 2
  • Mohammed A. Aleskandarany
    • 1
    • 3
  • Emad A. Rakha
    • 1
    • 4
  • Radwa Z. A. Moustafa
    • 5
  • Ahmed Benhasouna
    • 1
  • Christopher Nolan
    • 1
  • Andrew R. Green
    • 1
  • Mohammad Ilyas
    • 1
    • 4
  • Ian O. Ellis
    • 1
    • 4
  1. 1.Division of Pathology, School of Molecular Medical SciencesUniversity of NottinghamNottinghamUK
  2. 2.Department of Pathology, Faculty of MedicineSuez Canal UniversityIsmailiaEgypt
  3. 3.Pathology DepartmentMenoufyia UniversityShibin el KomEgypt
  4. 4.Department of HistopathologyNottingham City Hospital NHS TrustNottinghamUK
  5. 5.Egyptian Ministry of HealthIsmailiaEgypt

Personalised recommendations