Breast Cancer Research and Treatment

, Volume 133, Issue 1, pp 11–21 | Cite as

Role of interleukin-10 in breast cancer

  • Hamidullah
  • Bendangla Changkija
  • Rituraj KonwarEmail author


Cytokines are low molecular weight regulatory proteins or glycoprotein that modulates the intensity and duration of immune response by stimulating or inhibiting the activation, proliferation, and/or differentiation of target cells. Different cytokines are known to have diverse role in breast cancer initiation and progression. Interleukin-10 (IL-10), a pleiotropic anti-inflammatory cytokine, induces immunosuppression and assists in escape from tumor immune surveillance. Like several other cytokines, IL-10 also can exert dual proliferative and inhibitory effect on breast tumor cells indicating a complex role of IL-10 in breast cancer initiation and progression. In this review, we tried to put together a comprehensive current view on significance of IL-10 in promotion, inhibition, and importance as prognosticator in breast cancer based on in vitro, in vivo, and clinical evidences. For literature collection, we conducted PubMed search with keywords “IL-10” and “breast cancer”.


IL-10 Breast cancer Cytokine 



The authors are thankful to Indian Council of Medical Research (ICMR), Govt. of India for financial support by (Grant Number 5/13/12/2007-NCDIII). Hamidullah would like to thank Department of Biotechnology (DBT), Govt. of India for Junior Research Fellowship. CDRI communication number of this manuscript is 8143.

Conflict of interest

None of the authors have any conflict of interest.


  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108PubMedCrossRefGoogle Scholar
  2. 2.
    Parkin DM, Fernandez LM (2006) Use of statistics to assess the global burden of breast cancer. Breast J 12(Suppl. 1):70–80CrossRefGoogle Scholar
  3. 3.
    Smyth MJ, Cretney E, Kershaw MH, Hayakawa Y (2004) Cytokines in cancer immunity and immunotherapy. Immunol Rev 202:275–293PubMedCrossRefGoogle Scholar
  4. 4.
    Standish LJ, Sweet ES, Novack J, Wenner CA, Bridge C, Nelson A, Martzen M, Torkelson C (2008) Breast cancer and the immune system. J Soc Integr Oncol 6(4):158–168PubMedGoogle Scholar
  5. 5.
    DeNardo DG, Coussens LM (2007) Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 9(4):212PubMedCrossRefGoogle Scholar
  6. 6.
    Rao VS, Dyer CE, Jameel JK, Drew PJ, Greenman J (2006) Potential prognostic and therapeutic roles for cytokines in breast cancer (Review). Oncol Rep 15(1):179–185PubMedGoogle Scholar
  7. 7.
    Carpi A, Nicolini A, Antonelli A, Ferrari P, Rossi G (2009) Cytokines in the management of high risk or advanced breast cancer: an update and expectation. Curr Cancer Drug Target 9(8):888–903CrossRefGoogle Scholar
  8. 8.
    Konwar R, Chaudhary P, Kumar S, Mishra D, Chattopadhyay N, Bid HK (2009) Breast cancer risk associated with polymorphisms of IL-1RN and IL-4 gene in Indian women. Oncol Res 17(8):367–372PubMedCrossRefGoogle Scholar
  9. 9.
    Moore KW, O’Garra A, de Waal MR, Vieira P, Mosmann TR (1993) Interleukin-10. Annu Rev Immunol 11:165–190PubMedCrossRefGoogle Scholar
  10. 10.
    Fitzgerald KA, O’Neill LAJ, Gearing AJH, Callard RE (2001) The cytokine facts book, 2nd edn. Academic Press, LondonGoogle Scholar
  11. 11.
    Lentsch AB, Shanley TP, Sarma V, Ward PA (1997) In vivo suppression of NF-kappa B and preservation of I kappa B alpha by interleukin-10 and interleukin-13. J Clin Invest 100(10):2443–2448PubMedCrossRefGoogle Scholar
  12. 12.
    Kotenko SV, Krause CD, Izotova LS, Pollack BP, Wu W, Pestka S (1997) Identification and functional characterization of a second chain of the interleukin-10 receptor complex. EMBO J 16(19):5894–5903PubMedCrossRefGoogle Scholar
  13. 13.
    Mosmann TR (1994) Properties and functions of interleukin-10. Adv Immunol 56:1–26PubMedCrossRefGoogle Scholar
  14. 14.
    Howard M, O’Garra A (1992) Biological properties of interleukin 10. Immunol Today 13(6):198–200PubMedCrossRefGoogle Scholar
  15. 15.
    Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765PubMedCrossRefGoogle Scholar
  16. 16.
    Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB (2004) Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 22:929–979PubMedCrossRefGoogle Scholar
  17. 17.
    Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG (2011) Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 29:71–109PubMedCrossRefGoogle Scholar
  18. 18.
    de Waal Malefyt R, Yssel H, Roncarolo MG, Spits H, de Vries JE (1992) Interleukin-10. Curr Opin Immunol 4(3):314–320PubMedCrossRefGoogle Scholar
  19. 19.
    Asadullah K, Sterry W, Volk HD (2003) Interleukin-10 therapy—review of a new approach. Pharmacol Rev 55(2):241–269PubMedCrossRefGoogle Scholar
  20. 20.
    Sabat R, Grütz G, Warszawska K, Kirsch S, Witte E, Wolk K, Geginat J (2010) Biology of interleukin-10. Cytokine Growth Factor Rev 21(5):331–344PubMedCrossRefGoogle Scholar
  21. 21.
    Wolk K, Kunz S, Asadullah K, Sabat R (2002) Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol 168(11):5397–5402PubMedGoogle Scholar
  22. 22.
    Couper KN, Blount DG, Riley EM (2008) IL-10: the master regulator of immunity to infection. J Immunol 180(9):5771–5777PubMedGoogle Scholar
  23. 23.
    O’Garra A, Vieira P (2007) TH1 cells control themselves by producing interleukin-10. Nat Rev Immunol 7:425–428PubMedCrossRefGoogle Scholar
  24. 24.
    Ho AS, Wei SH, Mui AL, Miyajima A, Moore KW (1995) Functional regions of the mouse interleukin-10 receptor cytoplasmic domain. Mol Cell Biol 15:5043–5053PubMedGoogle Scholar
  25. 25.
    Finbloom DS, Winestock KD (1995) IL-10 induces the tyrosine phosphorylation of tyk2 and Jak1 and the differential assembly of STAT1 alpha and STAT3 complexes in human T cells and monocytes. J Immunol 155(3):1079–1090PubMedGoogle Scholar
  26. 26.
    Lai CF, Ripperger J, Morella KK, Jurlander J, Hawley TS, Carson WE, Kordula T, Caligiuri MA, Hawley RG, Fey GH, Baumann H (1996) Receptors for interleukin (IL)-10 and IL-6-type cytokines use similar signaling mechanisms for inducing transcription through IL-6 response elements. J Biol Chem 271(24):13968–13975PubMedCrossRefGoogle Scholar
  27. 27.
    Williams LM, Ricchetti G, Sarma U, Smallie T, Foxwell BM (2004) Interleukin-10 suppression of myeloid cell activation—a continuing puzzle. Immunology 113(3):281–292PubMedCrossRefGoogle Scholar
  28. 28.
    Braunschweig A, Poehlmann TG, Busch S, Schleussner E, Markert UR (2011) Signal transducer and activator of transcription 3 (STAT3) and suppressor of cytokine signaling (SOCS3) balance controls cytotoxicity and IL-10 expression in decidual-like natural killer cell line NK-92. Am J Reprod Immunol 66(3):329–335PubMedCrossRefGoogle Scholar
  29. 29.
    Lee EB, Kim A, Kang K, Kim H, Lim JS (2010) NDRG2-mediated modulation of SOCS3 and STAT3 activity inhibits IL-10 production. Immune Netw 10(6):219–229PubMedCrossRefGoogle Scholar
  30. 30.
    Haddad JJ, Saadé NE, Safieh-Garabedian B (2003) Interleukin-10 and the regulation of mitogen-activated protein kinases: are these signalling modules targets for the anti-inflammatory action of this cytokine? Cell Signal 15(3):255–267PubMedCrossRefGoogle Scholar
  31. 31.
    Kruger-Krasagakes S, Krasagakis K, Garbe C, Schmitt E, Hüls C, Blankenstein T, Diamantstein T (1994) Expression of interleukin 10 in human melanoma. Br J Cancer 70(6):1182–1185PubMedCrossRefGoogle Scholar
  32. 32.
    Gastl GA, Abrams JS, Nanus DM, Oosterkamp R, Silver J, Liu F, Chen M, Albino AP, Bander NH (1993) Interleukin-10 production by human carcinoma cell lines and its relationship to interleukin-6 expression. Int J Cancer 55(1):96–101PubMedCrossRefGoogle Scholar
  33. 33.
    Joimel U, Gest C, Soria J, Pritchard LL, Alexandre J, Laurent M, Blot E, Cazin L, Vannier JP, Varin R et al (2010) Stimulation of angiogenesis resulting from cooperation between macrophages and MDA-MB-231 breast cancer cells: proposed molecular mechanism and effect of tetrathiomolybdate. BMC Cancer 10:375PubMedCrossRefGoogle Scholar
  34. 34.
    Venetsanakos E, Beckman I, Bradley J, Skinner JM (1997) High incidence of interleukin 10 mRNA but not interleukin 2 mRNA detected in human breast tumours. Br J Cancer 75(12):1826–1830PubMedCrossRefGoogle Scholar
  35. 35.
    Al-Sarireh B, Sathaporn S, Robins A, Jenkin D, Vassanasiri W, El-Sheemy M, Jibril JA, Clark D, Eremin O (2010) Mononuclear phagocytes but not tumour cells are the main source of elevated inter-leukin (IL)-10 levels in human breast cancer. Surgeons in training 2000. The Royal College of Surgeons of Edinburgh. Retrieved on 02 December 2010 from
  36. 36.
    Bogdan C, Vodovotz Y, Nathan C (1991) Macrophage deactivation by interleukin 10. J Exp Med 174(6):1549–1555PubMedCrossRefGoogle Scholar
  37. 37.
    Hashimoto SI, Komuro I, Yamada M, Akagawa KS (2001) IL-10 inhibits granulocyte-macrophage colony-stimulating factor-dependent human monocyte survival at the early stage of the culture and inhibits the generation of macrophages. J Immunol 167(7):3619–3625PubMedGoogle Scholar
  38. 38.
    Commeren DL, Van Soest PL, Karimi K, Löwenberg B, Cornelissen JJ, Braakman E (2003) Paradoxical effects of interleukin-10 on the maturation of murine myeloid dendritic cells. Immunology 110(2):188–196PubMedCrossRefGoogle Scholar
  39. 39.
    de Waal Malefyt R, Haanen J, Spits H, Roncarolo MG, te Velde A, Figdor C, Johnson K, Kastelein R, Yssel H, de Vries JE (1991) Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 174(4):915–924PubMedCrossRefGoogle Scholar
  40. 40.
    Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW, O’Garra A (1991) IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol 146(10):3444–3451PubMedGoogle Scholar
  41. 41.
    Macatonia SE, Doherty TM, Knight SC, O’Garra A (1993) Differential effect of IL-10 on dendritic cell-induced T cell proliferation and IFN-gamma production. J Immunol 150(9):3755–3765PubMedGoogle Scholar
  42. 42.
    de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE (1991) Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174(5):1209–1220PubMedCrossRefGoogle Scholar
  43. 43.
    Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A (1991) IL-10 inhibits cytokine production by activated macrophages. J Immunol 147(11):3815–3822PubMedGoogle Scholar
  44. 44.
    Jenkins JK, Malyak M, Arend WP (1994) The effects of interleukin-10 on interleukin-1 receptor antagonist and interleukin-1 beta production in human monocytes and neutrophils. Lymphokine Cytokine Res 13(1):47–54PubMedGoogle Scholar
  45. 45.
    Huber S, Gagliani N, Esplugues E, O’Connor W Jr, Huber FJ, Chaudhry A, Kamanaka M, Kobayashi Y, Booth CJ, Rudensky AY et al (2011) Th17 cells express interleukin-10 receptor and are controlled by Foxp3 and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner. Immunity 34(4):554–565PubMedCrossRefGoogle Scholar
  46. 46.
    Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM, Jack RS, Wunderlich FT, Brüning JC, Müller W et al (2011) Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34(4):566–578PubMedCrossRefGoogle Scholar
  47. 47.
    Scott DE, Gause WC, Finkelman FD, Steinberg AD (1990) Anti-CD3 antibody induces rapid expression of cytokine genes in vivo. J Immunol 145(7):2183–2188PubMedGoogle Scholar
  48. 48.
    Pilette C, Nouri-Aria KT, Jacobson MR, Wilcock LK, Detry B, Walker SM, Francis JN, Durham SR (2007) Grass pollen immunotherapy induces an allergen-specific IgA2 antibody response associated with mucosal TGF-beta expression. J Immunol 178(7):4658–4666PubMedGoogle Scholar
  49. 49.
    Geissmann F, Launay P, Pasquier B, Lepelletier Y, Leborgne M, Lehuen A, Brousse N, Monteiro RC (2001) A subset of human dendritic cells expresses IgA Fc receptor (CD89), which mediates internalization and activation upon cross-linking by IgA complexes. J Immunol 166(1):346–352PubMedGoogle Scholar
  50. 50.
    McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, Cua DJ (2007) TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 8(12):1390–1397PubMedCrossRefGoogle Scholar
  51. 51.
    Awasthi A, Carrier Y, Peron JP, Bettelli E, Kamanaka M, Flavell RA, Kuchroo VK, Oukka M, Weiner HL (2007) A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol 8(12):1380–1389PubMedCrossRefGoogle Scholar
  52. 52.
    Fitzgerald DC, Zhang GX, El-Behi M, Fonseca-Kelly Z, Li H, Yu S, Saris CJ, Gran B, Ciric B, Rostami A (2007) Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. Nat Immunol 8(12):1372–1379PubMedCrossRefGoogle Scholar
  53. 53.
    Pang G, Couch L, Batey R, Clancy R, Cripps A (1994) GM-CSF, IL-1 alpha, IL-1 beta, IL-6, IL-8, IL-10, ICAM-1 and VCAM-1 gene expression and cytokine production in human duodenal fibroblasts stimulated with lipopolysaccharide, IL-1 alpha and TNF-alpha. Clin Exp Immunol 96(3):437–443PubMedCrossRefGoogle Scholar
  54. 54.
    Kim KH, Kim DI, Kim SH, Jung EM, Kang JH, Jeung EB, Yang MP (2011) Trans-10, cis-12-conjugated linoleic acid attenuates tumor necrosis factor-α production by lipopolysaccharide-stimulated porcine peripheral blood mononuclear cells through induction of interleukin-10. Cytokine; doi: 10.1016/j.cyto.2011.06.019
  55. 55.
    Brunsing RL, Prossnitz ER (2011) Induction of interleukin-10 in the T helper type 17 effector population by the G protein coupled estrogen receptor (GPER) agonist G-1. Immunology 134(1):93–106PubMedCrossRefGoogle Scholar
  56. 56.
    Lazarini M, Traina F, Winnischofer SM, Costa FF, Queiroz ML, Saad ST (2011) Effects of thalidomide on long-term bone marrow cultures from patients with myelodysplastic syndromes: induction of IL-10 expression in the stromal layers. Leuk Res 35(8):1102–1107PubMedCrossRefGoogle Scholar
  57. 57.
    Lian ZR, Xu YF, Wang XB, Gong JP, Liu ZJ (2011) Suppression of Histone Deacetylase 11 Promotes Expression of IL-10 in Kupffer Cells and Induces Tolerance Following Orthotopic Liver Transplantation in Rats. J Surg Res; doi: 10.1016/j.jss.2010.12.035
  58. 58.
    Municio C, Hugo E, Alvarez Y, Alonso S, Blanco L, Fernández N, Sánchez Crespo M (2011) Apoptotic cells enhance IL-10 and reduce IL-23 production in human dendritic cells treated with zymosan. Mol Immunol; doi: 10.1016/j.molimm.2011.07.022
  59. 59.
    Xu J, Yang Y, Qiu G, Lal G, Wu Z, Levy DE, Ochando JC, Bromberg JS, Ding Y (2009) c-Maf regulates IL-10 expression during Th17 polarization. J Immunol 182(10):6226–6236PubMedCrossRefGoogle Scholar
  60. 60.
    Durez P, Abramowicz D, Gérard C, Van Mechelen M, Amraoui Z, Dubois C, Leo O, Velu T, Goldman M (1993) In vivo induction of interleukin 10 by anti-CD3 monoclonal antibody or bacterial lipopolysaccharide: differential modulation by cyclosporin A. J Exp Med 177(2):551–555PubMedCrossRefGoogle Scholar
  61. 61.
    Ji JD, Kim HJ, Rho YH, Choi SJ, Lee YH, Cheon HJ, Sohn J, Song GG (2005) Inhibition of IL-10-induced STAT3 activation by 15-deoxy-Delta12, 14-prostaglandin J2. Rheumatology (Oxford) 44(8):983–988CrossRefGoogle Scholar
  62. 62.
    Kalechman Y, Gafter U, Weinstein T, Chagnac A, Freidkin I, Tobar A, Albeck M, Sredni B (2004) Inhibition of interleukin-10 by the immunomodulator AS101 reduces mesangial cell proliferation in experimental mesangioproliferative glomerulonephritis: association with dephosphorylation of STAT3. J Biol Chem 279(23):24724–24732PubMedCrossRefGoogle Scholar
  63. 63.
    Alas S, Emmanouilides C, Bonavida B (2001) Inhibition of interleukin 10 by rituximab results in down-regulation of bcl-2 and sensitization of B-cell non-Hodgkin’s lymphoma to apoptosis. Clin Cancer Res 7(3):709–723PubMedGoogle Scholar
  64. 64.
    Kundu N, Beaty TL, Jackson MJ, Fulton AM (1996) Antimetastatic and antitumor activities of interleukin 10 in a murine model of breast cancer. J Natl Cancer Inst 88(8):536–541PubMedCrossRefGoogle Scholar
  65. 65.
    Mocellin S, Marincola FM, Young HA (2005) Interleukin-10 and the immune response against cancer: a counterpoint. J Leukoc Biol 78(5):1043–1051PubMedCrossRefGoogle Scholar
  66. 66.
    Pinzon-Charry A, Maxwell T, López JA (2005) Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 83(5):451–461PubMedCrossRefGoogle Scholar
  67. 67.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674PubMedCrossRefGoogle Scholar
  68. 68.
    Cohen SB, Crawley JB, Kahan MC, Feldmann M, Foxwell BM (1997) Interleukin-10 rescues T cells from apoptotic cell death: association with an upregulation of Bcl-2. Immunology 92:1–5PubMedCrossRefGoogle Scholar
  69. 69.
    Taga K, Cherney B, Tosato G (1993) IL-10 inhibits apoptotic cell death in human T cells starved of IL-2. Int Immunol 5:1599–1608PubMedCrossRefGoogle Scholar
  70. 70.
    Alas S, Bonavida B (2001) Rituximab inactivates signal transducer and activation of transcription 3 (stat3) activity in b-nonhodgkin’s lymphoma through inhibition of the interleukin 10 autocrine/paracrine loop and results in down-regulation of bcl-2 and sensitization to cytotoxic drugs. Cancer Res 61:5137–5144PubMedGoogle Scholar
  71. 71.
    Wang XZ, Zhang SJ, Chen YX, Chen ZX, Huang YH, Zhang LJ (2004) Effects of platelet-derived growth factor and interleukin-10 on Fas/Fas-ligand and Bcl-2/Bax mRNA expression in rat hepatic stellate cells in vitro. World J Gastroenterol 10:2706–2710PubMedGoogle Scholar
  72. 72.
    Zeng L, O’Connor C, Zhang J, Kaplan AM, Cohen DA (2010) IL-10 promotes resistance to apoptosis and metastatic potential in lung tumor cell lines. Cytokine 49(3):294–302PubMedCrossRefGoogle Scholar
  73. 73.
    Fox JG, Sheppard BJ, Dangler CA, Whary MT, Ihrig M, Wang TC (2002) Germ-line p53-targeted disruption inhibits helicobacter induced premalignant lesions and invasive gastric carcinoma through down-regulation of Th1 proinflammatory responses. Cancer Res 62:696–702PubMedGoogle Scholar
  74. 74.
    Okuda Y, Okuda M, Bernard CC (2003) Regulatory role of p53 in experimental autoimmune encephalomyelitis. J Neuroimmunol 135:29–37PubMedCrossRefGoogle Scholar
  75. 75.
    Ohkuso-Tsukada K, Tsukada T, Isobe KI (1999) Accelerated development and aging of the immune system in p53-deficient mice. J Immunol 163:1966–1972Google Scholar
  76. 76.
    Kohno T, Mizukami H, Suzuki M, Saga Y, Takei Y, Shimpo M, Matsushita T, Okada T, Hanazono Y, Kume A, Sato I, Ozawa K (2003) Interleukin-10-mediated inhibition of angiogenesis and tumor growth in mice bearing VEGF-producing ovarian cancer. Cancer Res 63(16):5091–5094PubMedGoogle Scholar
  77. 77.
    Stearns ME, Rhim J, Wang M (1999) Interleukin 10 (IL-10) inhibition of primary human prostate cell-induced angiogenesis: IL-10 stimulation of tissue inhibitor of metalloproteinase-1 and inhibition of matrix metalloproteinase (MMP)-2/MMP-9 secretion. Clin Cancer Res 5(1):189–196PubMedGoogle Scholar
  78. 78.
    García-Hernández ML, Hernández-Pando R, Gariglio P, Berumen J (2002) Interleukin-10 promotes B16-melanoma growth by inhibition of macrophage functions and induction of tumour and vascular cell proliferation. Immunology 105(2):231–243PubMedCrossRefGoogle Scholar
  79. 79.
    Huang S, Xie K, Bucana CD, Ullrich SE, Bar-Eli M (1996) Interleukin 10 suppresses tumor growth and metastasis of human melanoma cells: potential inhibition of angiogenesis. Clin Cancer Res 2(12):1969–1979PubMedGoogle Scholar
  80. 80.
    Fujii S, Shimizu K, Shimizu T, Lotze MT (2001) Interleukin-10 promotes the maintenance of antitumor CD8(+) T-cell effector function in situ. Blood 98(7):2143–2151PubMedCrossRefGoogle Scholar
  81. 81.
    Segal BM, Glass DD, Shevach EM (2002) Cutting edge: IL-10-producing CD4+ T cells mediate tumor rejection. J Immunol 168(1):1–4PubMedGoogle Scholar
  82. 82.
    Garcia-Lora A, Algarra I, Garrido F (2003) MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 195(3):346–355PubMedCrossRefGoogle Scholar
  83. 83.
    Di Carlo E, Coletti A, Modesti A, Giovarelli M, Forni G, Musiani P (1998) Local release of interleukin-10 by transfected mouse adenocarcinoma cells exhibits pro- and anti-inflammatory activity and results in a delayed tumor rejection. Eur Cytokine Netw 9(1):61–68PubMedGoogle Scholar
  84. 84.
    Kaufman HL, Rao JB, Irvine KR, Bronte V, Rosenberg SA, Restifo NP (1999) Interleukin-10 enhances the therapeutic effectiveness of a recombinant poxvirus-based vaccine in an experimental murine tumor model. J Immunother 22(6):489–496PubMedCrossRefGoogle Scholar
  85. 85.
    Dorsey R, Kundu N, Yang Q, Tannenbaum CS, Sun H, Hamilton TA, Fulton AM (2002) Immunotherapy with interleukin-10 depends on the CXC chemokines inducible protein-10 and monokine induced by IFN-gamma. Cancer Res 62(9):2606–2610PubMedGoogle Scholar
  86. 86.
    Allione A, Consalvo M, Nanni P, Lollini PL, Cavallo F, Giovarelli M, Forni M, Gulino A, Colombo MP, Dellabona P et al (1994) Immunizing and curative potential of replicating and nonreplicating murine mammary adenocarcinoma cells engineered with interleukin (IL)-2, IL-4, IL-6, IL-7, IL-10, tumor necrosis factor alpha, granulocyte-macrophage colony-stimulating factor, and gamma-interferon gene or admixed with conventional adjuvants. Cancer Res 54(23):6022–6026PubMedGoogle Scholar
  87. 87.
    Giovarelli M, Musiani P, Modesti A, Dellabona P, Casorati G, Allione A, Consalvo M, Cavallo F, di Pierro F, De Giovanni C (1995) Local release of IL-10 by transfected mouse mammary adenocarcinoma cells does not suppress but enhances antitumor reaction and elicits a strong cytotoxic lymphocyte and antibody-dependent immune memory. J Immunol 155(6):3112–3123PubMedGoogle Scholar
  88. 88.
    Kundu N, Dorsey R, Jackson MJ, Guiterrez P, Wilson K, Fu S, Ramanujam K, Thomas E, Fulton AM (1998) Interleukin-10 gene transfer inhibits murine mammary tumors and elevates nitric oxide. Int J Cancer 76(5):713–719PubMedCrossRefGoogle Scholar
  89. 89.
    Paul S, Biswas A, Sasmal K, Mukherjee S, Biswas T, Biswas R (2010) IL-10 alters prolactin receptor activity emulating that during breast cancer. Cytokine 51(2):144–150PubMedCrossRefGoogle Scholar
  90. 90.
    Halak BK, Maguire HC Jr, Lattime EC (1999) Tumor-induced interleukin-10 inhibits type 1 immune responses directed at a tumor antigen as well as a non-tumor antigen present at the tumor site. Cancer Res 59(4):911–917PubMedGoogle Scholar
  91. 91.
    Abbas AK, Lichtman AH (2006) Cellular and molecular immunology, 5th edn. Elsevier, AmsterdamGoogle Scholar
  92. 92.
    Knüpfer H, Preiss R (2007) Significance of interleukin-6 (IL-6) in breast cancer (review). Breast Cancer Res Treat 102:129–135PubMedCrossRefGoogle Scholar
  93. 93.
    Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L (1998) Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334(Pt 2):297–314PubMedGoogle Scholar
  94. 94.
    Kovacs E (2001) Investigation of interleukin-6 (IL-6), soluble IL-6 receptor (sIL-6R) and soluble gp130 (sgp130) in sera of cancer patients. Biomed Pharmacother 55(7):391–396PubMedCrossRefGoogle Scholar
  95. 95.
    Kozłowski L, Zakrzewska I, Tokajuk P, Wojtukiewicz MZ (2003) Concentration of interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) in blood serum of breast cancer patients. Rocz Akad Med Bialymst 48:82–84PubMedGoogle Scholar
  96. 96.
    Chavey C, Bibeau F, Gourgou-Bourgade S, Burlinchon S, Boissière F, Laune D, Roques S, Lazennec G (2007) Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast Cancer Res 9(1):R15PubMedCrossRefGoogle Scholar
  97. 97.
    Lyon DE, McCain NL, Walter J (2008) Cytokine comparison between women with breast cancer and women with a negative breast biopsy. Nurs Res 57(1):51–58PubMedCrossRefGoogle Scholar
  98. 98.
    Akbulut H, Tang Y, Akbulut KG, Maynard J, Deisseroth A (2008) Chemotherapy targeted to cancer tissue potentiates antigen-specific immune response induced by vaccine for in vivo antigen loading and activation of dendritic cells. Mol Ther 16(10):1753–1760PubMedCrossRefGoogle Scholar
  99. 99.
    Pusztai L, Mendoza TR, Reuben JM, Martinez MM, Willey JS, Lara J, Syed A, Fritsche HA, Bruera E, Booser D et al (2004) Changes in plasma levels of inflammatory cytokines in response to paclitaxel chemotherapy. Cytokine 25(3):94–102PubMedCrossRefGoogle Scholar
  100. 100.
    Lee M, Yea SS, Jeon YJ (2000) Paclitaxel causes mouse splenic lymphocytes to a state hyporesponsive to lipopolysaccharide stimulation. Int J Immunopharmacol 22(8):615–621PubMedCrossRefGoogle Scholar
  101. 101.
    Nolen BM, Marks JR, Ta’san S, Rand A, Luong TM, Wang Y, Blackwell K, Lokshin AE (2008) Serum biomarker profiles and response to neoadjuvant chemotherapy for locally advanced breast cancer. Breast Cancer Res 10(3):R45PubMedCrossRefGoogle Scholar
  102. 102.
    Llanes-Fernandez L, Alvarez-Goyanes RI, Arango-Prado Mdel C, Alcocer-Gonzalez JM, Mojarrieta JC, Perez XE, Lopez MO, Odio SF, Camacho-Rodríguez R, Guerra-Yi ME et al (2006) Relationship between IL-10 and tumor markers in breast cancer patients. Breast 15(4):482–489PubMedCrossRefGoogle Scholar
  103. 103.
    Merendino RA, Arena A, Capozza AB, Chillemi S, Mesiti M (1996) Serum levels of interleukin-10 in patients affected by breast cancer. Immunol Lett 53(1):59–60PubMedCrossRefGoogle Scholar
  104. 104.
    Merendino RA, Gangemi S, Misefari A, Arena A, Capozza AB, Chillemi S, D’Ambrosio FP (1999) Interleukin-12 and interleukin-10 production by mononuclear phagocytic cells from breast cancer patients. Immunol Lett 68(2–3):355–358PubMedCrossRefGoogle Scholar
  105. 105.
    Son KS, Kang HS, Kim SJ, Jung SY, Min SY, Lee SY, Kim SW, Kwon Y, Lee KS, Shin KH et al (2010) Hypomethylation of the interleukin-10 gene in breast cancer tissues. Breast 19(6):484–488PubMedCrossRefGoogle Scholar
  106. 106.
    Razmkhah M, Jaberipour M, Erfani N, Habibagahi M, Talei AR, Ghaderi A (2011) Adipose derived stem cells (ASCs) isolated from breast cancer tissue express IL-4, IL-10 and TGF-β1 and upregulate expression of regulatory molecules on T cells: do they protect breast cancer cells from the immune response? Cell Immunol 266(2):116–122PubMedCrossRefGoogle Scholar
  107. 107.
    Heckel MC, Wolfson A, Slachta CA, Schwarting R, Salgame P, Katsetos CD, Platsoucas CD (2011) Human breast tumor cells express IL-10 and IL-12p40 transcripts and proteins, but do not produce IL-12p70. Cell Immunol 266(2):143–153PubMedCrossRefGoogle Scholar
  108. 108.
    Rosen HR, Ausch C, Reinerova M, Zaspin E, Renner K, Rosen AC, Schiessel R, Moroz C (1998) Activated lymphocytes from breast cancer patients express the characteristics of type 2 helper cells—a possible role for breast cancer-associated p43. Cancer Lett 127(1–2):129–134PubMedCrossRefGoogle Scholar
  109. 109.
    Rao VS, Alabi A, Dyer CE, Greenman J, Drew PJ (2008) IL-10 and IL-12 expression in breast cancer patients and effect of therapy—ASCO Annual Meeting Proceedings (Post-Meeting Edition). J Clin Oncol 26(15S):14016Google Scholar
  110. 110.
    Santos SCL, Ribeiro EMSF, Cavalli IJ, Lima RS, da Graça Bicalho M (2005) IL-10 gene polymorphisms and sporadic breast cancer. Hum Immunol 66(8), Supplement 1:53Google Scholar
  111. 111.
    Yu KD, Chen AX, Yang C, Fan L, Huang AJ, Shao ZM (2010) The associations between two polymorphisms in the interleukin-10 gene promoter and breast cancer risk. Breast Cancer Res Treat; doi: 10.1007/s10549-010-1133-3
  112. 112.
    Giordani L, Bruzzi P, Lasalandra C, Quaranta M, Schittulli F, Della Ragione F, Iolascon A (2003) Association of breast cancer and polymorphisms of interleukin-10 and tumor necrosis factor-alpha genes. Clin Chem 49(10):1664–1667PubMedCrossRefGoogle Scholar
  113. 113.
    Smith KC, Bateman AC, Fussell HM, Howell WM (2004) Cytokine gene polymorphisms and breast cancer susceptibility and prognosis. Eur J Immunogenet 31(4):167–173PubMedCrossRefGoogle Scholar
  114. 114.
    Langsenlehner U, Krippl P, Renner W, Yazdani-Biuki B, Eder T, Köppel H, Wascher TC, Paulweber B, Samonigg H (2005) Interleukin-10 promoter polymorphism is associated with decreased breast cancer risk. Breast Cancer Res Treat 90(2):113–115PubMedCrossRefGoogle Scholar
  115. 115.
    Kong F, Liu J, Liu Y, Song B, Wang H, Liu W (2010) Association of interleukin-10 gene polymorphisms with breast cancer in a Chinese population. J Exp Clin Cancer Res 29:72PubMedCrossRefGoogle Scholar
  116. 116.
    Gerger A, Renner W, Langsenlehner T, Hofmann G, Knechtel G, Szkandera J, Samonigg H, Krippl P, Langsenlehner U (2010) Association of interleukin-10 gene variation with breast cancer prognosis. Breast Cancer Res Treat 119(3):701–705PubMedCrossRefGoogle Scholar
  117. 117.
    Turner DM, Williams DM, Sankaran D, Lazarus M, Sinnott PJ, Hutchinson IV (1997) An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet 24(1):1–8PubMedCrossRefGoogle Scholar
  118. 118.
    Kingo K, Ratsep R, Koks S, Karelson M, Silm H, Vasar E (2005) Influence of genetic polymorphisms on interleukin-10 mRNA expression and psoriasis susceptibility. J Dermatol Sci 37(2):111–113PubMedCrossRefGoogle Scholar
  119. 119.
    Crawley E, Kay R, Sillibourne J, Patel P, Hutchinson I, Woo P (1999) Polymorphic haplotypes of the interleukin-10 50 flanking region determine variable interleukin-10 transcription and are associated with particular phenotypes of juvenile rheumatoid arthritis. Arthritis Rheum 42(6):1101–1108PubMedCrossRefGoogle Scholar
  120. 120.
    Yang CH, Chuang LY, Chen YJ, Tseng HF, Chang HW (2011) Computational analysis of simulated SNP interactions between 26 growth factor-related genes in a breast cancer association study. OMICS 15(6):399–407PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Hamidullah
    • 1
  • Bendangla Changkija
    • 1
  • Rituraj Konwar
    • 1
    Email author
  1. 1.Endocrinology DivisionCSIR-Central Drug Research Institute (CDRI)LucknowIndia

Personalised recommendations