Breast Cancer Research and Treatment

, Volume 131, Issue 3, pp 1049–1059 | Cite as

High level of miR-21, miR-10b, and miR-31 expression in bilateral vs. unilateral breast carcinomas

  • Aglaya G. Iyevleva
  • Ekatherina Sh. Kuligina
  • Nathalia V. Mitiushkina
  • Alexandr V. Togo
  • Yoshio Miki
  • Evgeny N. Imyanitov
Brief Report


We analyzed the expression of several microRNAs (miRs) implicated in breast cancer (BC) pathogenesis (miR-21, miR-10b, miR17-5p, mir-31, miR-155, miR-200c, miR-18a, miR-205, and miR-27a) in 80 breast carcinomas obtained from patients with bilateral BC (biBC) and 40 cases of unilateral BC (uBC). Unexpectedly, three miRs (miR-21, miR-10b and miR-31) demonstrated significantly higher level of expression in biBC vs. uBC (P = 0.0001, 0.00004 and 0.0002, respectively). Increased contents of miR-21, miR-10b and miR-31 were observed in all categories of biBC tumors, i.e., in synchronous biBC as well as in first and second tumors from metachronous biBC cases. Synchronous biBC showed more similarity of miR expression profiles within pairs that the metachronous doublets (P = 0.004). This study suggests that bilateral breast tumors have somewhat distinct pattern of molecular events as compared to the unilateral disease.


microRNA Bilateral breast cancer Breast cancer predisposition 



This study has been supported by the Russian Federation for Basic Research (grants 10-04-92110, 10-04-00260, 11-04-00227 and 11-04-01643), the Japanese Society for the Promotion of Science (JSPS) (project 10037711), the Federal Agency for Science and Innovations (contract 02.740.11.0780), the Commission of the European Communities (grant PITN-GA-2009-238132), and the Government of Moscow (grant 15/11).

Conflict of interest



  1. 1.
    Imyanitov EN, Hanson KP (2003) Molecular pathogenesis of bilateral breast cancer. Cancer Lett 191:1–7PubMedCrossRefGoogle Scholar
  2. 2.
    Kuligina E, Reiner A, Imyanitov EN, Begg CB (2010) Evaluating cancer epidemiologic risk factors using multiple primary malignancies. Epidemiology 21:366–372PubMedCrossRefGoogle Scholar
  3. 3.
    Chen Y, Thompson W, Semenciw R, Mao Y (1999) Epidemiology of contralateral breast cancer. Cancer Epidemiol Biomarkers Prev 8:855–861PubMedGoogle Scholar
  4. 4.
    Majed B, Dozol A, Ribassin-Majed L, Senouci K, Asselain B (2011) Increased risk of contralateral breast cancers among overweight and obese women: a time-dependent association. Breast Cancer Res Treat 126:729–738PubMedCrossRefGoogle Scholar
  5. 5.
    Imyanitov EN, Suspitsin EN, Grigoriev MY, Togo AV, ESh Kuligina, Belogubova EV, Pozharisski KM, Turkevich EA, Rodriquez C, Cornelisse CJ, Hanson KP, Theillet C (2002) Concordance of allelic imbalance profiles in synchronous and metachronous bilateral breast carcinomas. Int J Cancer 100:557–564PubMedCrossRefGoogle Scholar
  6. 6.
    Park SC, Hwang UK, Ahn SH, Gong GY, Yoon HS (2007) Genetic changes in bilateral breast cancer by comparative genomic hybridisation. Clin Exp Med 7:1–5PubMedCrossRefGoogle Scholar
  7. 7.
    Huo D, Melkonian S, Rathouz PJ, Khramtsov A, Olopade OI (2011) Concordance in histological and biological parameters between first and second primary breast cancers. Cancer 117:907–915PubMedCrossRefGoogle Scholar
  8. 8.
    Russnes HG, Kuligina ESh, Suspitsin EN, Voskresenskiy DA, Jordanova ES, Cornelisse CJ, Borresen-Dale AL, Imyanitov EN (2001) Paired distribution of molecular subtypes in bilateral breast carcinomas. Cancer Genet 204:96–102CrossRefGoogle Scholar
  9. 9.
    Suspitsin EN, Sokolenko AP, Togo AV, Lazareva YR, Turkevich EA, Matsko DE, Henrich KO, Borresen-Dale AL, Schwab M, Cornelisse CJ, Imyanitov EN (2007) Nonrandom distribution of oncogene amplifications in bilateral breast carcinomas: possible role of host factors and survival bias. Int J Cancer 120:297–302PubMedCrossRefGoogle Scholar
  10. 10.
    Swain SM, Wilson JW, Mamounas EP, Bryant J, Wickerham DL, Fisher B, Paik S, Wolmark N (2004) Estrogen receptor status of primary breast cancer is predictive of estrogen receptor status of contralateral breast cancer. J Natl Cancer Inst 96:516–523PubMedCrossRefGoogle Scholar
  11. 11.
    Kuligina ESh, Grigoriev MY, Suspitsin EN, Buslov KG, Zaitseva OA, Yatsuk OS, Lazareva YR, Togo AV, Imyanitov EN (2007) Microsatellite instability analysis of bilateral breast tumors suggests treatment-related origin of some contralateral malignancies. J Cancer Res Clin Oncol 133:57–64Google Scholar
  12. 12.
    Suspitsin EN, Due EU, Vu P, Hirvonen A, Børresen-Dale AL, Imyanitov EN (2008) TP53 mutations in synchronous and metachronous bilateral breast carcinomas. Cancer Genet Cytogenet 184:119–121PubMedCrossRefGoogle Scholar
  13. 13.
    Le Quesne J, Caldas C (2010) Micro-RNAs and breast cancer. Mol Oncol 4:230–241PubMedCrossRefGoogle Scholar
  14. 14.
    O’Day E, Lal A (2010) MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res 12:201PubMedCrossRefGoogle Scholar
  15. 15.
    Huang GL, Zhang XH, Guo GL, Huang KT, Yang KY, Shen X, You J, Hu XQ (2009) Clinical significance of miR-21 expression in breast cancer: SYBR-Green I-based real-time RT-PCR study of invasive ductal carcinoma. Oncol Rep 21:673–679PubMedGoogle Scholar
  16. 16.
    Li T, Li D, Sha J, Sun P, Huang Y (2009) MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 383:280–285PubMedCrossRefGoogle Scholar
  17. 17.
    Song B, Wang C, Liu J, Wang X, Lv L, Wei L, Xie L, Zheng Y, Song X (2010) MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. J Exp Clin Cancer Res 29:29PubMedCrossRefGoogle Scholar
  18. 18.
    Schramedei K, Mörbt N, Pfeifer G, Läuter J, Rosolowski M, Tomm JM, von Bergen M, Horn F, Brocke-Heidrich K (2011) MicroRNA-21 targets tumor suppressor genes ANP32A and SMARCA4. Oncogene 30:2975–2985Google Scholar
  19. 19.
    Yan LX, Wu QN, Zhang Y, Li YY, Liao DZ, Hou JH, Fu J, Zeng MS, Yun JP, Wu QL, Zeng YX, Shao JY (2011) Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Res 13:R2PubMedCrossRefGoogle Scholar
  20. 20.
    Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688PubMedCrossRefGoogle Scholar
  21. 21.
    Moriarty CH, Pursell B, Mercurio AM (2010) miR-10b targets Tiam1: implications for Rac activation and carcinoma migration. J Biol Chem 285:20541–20546PubMedCrossRefGoogle Scholar
  22. 22.
    Pedersen IM, Otero D, Kao E, Miletic AV, Hother C, Ralfkiaer E, Rickert RC, Gronbaek K, David M (2009) Onco-miR-155 targets SHIP1 to promote TNFalpha-dependent growth of B cell lymphomas. EMBO Mol Med 1:288–295PubMedCrossRefGoogle Scholar
  23. 23.
    Jiang S, Zhang HW, Lu MH, He XH, Li Y, Gu H, Liu MF, Wang ED (2010) MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res 70:3119–3127PubMedCrossRefGoogle Scholar
  24. 24.
    Kong W, He L, Coppola M, Guo J, Esposito NN, Coppola D, Cheng JQ (2010) MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem 285:17869–17879PubMedCrossRefGoogle Scholar
  25. 25.
    Rai D, Kim SW, McKeller MR, Dahia PL, Aguiar RC (2010) Targeting of SMAD5 links microRNA-155 to the TGF-beta pathway and lymphomagenesis. Proc Natl Acad Sci USA 107:3111–3116PubMedCrossRefGoogle Scholar
  26. 26.
    Wang F, Zheng Z, Guo J, Ding X (2010) Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol Oncol 119:586–593PubMedCrossRefGoogle Scholar
  27. 27.
    Wang P, Hou J, Lin L, Wang C, Liu X, Li D, Ma F, Wang Z, Cao X (2010) Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol 185:6226–6233PubMedCrossRefGoogle Scholar
  28. 28.
    Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S (2007) The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67:11001–11011PubMedCrossRefGoogle Scholar
  29. 29.
    Guttilla IK, White BA (2009) Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 284:23204–23216PubMedCrossRefGoogle Scholar
  30. 30.
    Liu T, Tang H, Lang Y, Liu M, Li X (2009) MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett 273:233–242PubMedCrossRefGoogle Scholar
  31. 31.
    Li X, Mertens-Talcott SU, Zhang S, Kim K, Ball J, Safe S (2010) MicroRNA-27a indirectly regulates estrogen receptor alpha expression and hormone responsiveness in MCF-7 breast cancer cells. Endocrinology 151:2462–2473PubMedCrossRefGoogle Scholar
  32. 32.
    Ma Y, Yu S, Zhao W, Lu Z, Chen J (2010) miR-27a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting Sprouty2. Cancer Lett 298:150–158PubMedCrossRefGoogle Scholar
  33. 33.
    Aprelikova O, Yu X, Palla J, Wei BR, John S, Yi M, Stephens R, Simpson RM, Risinger JI, Jazaeri A, Niederhuber J (2010) The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle 9:4387–4398PubMedCrossRefGoogle Scholar
  34. 34.
    Cochrane DR, Spoelstra NS, Howe EN, Nordeen SK, Richer JK (2009) MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther 8:1055–1066PubMedCrossRefGoogle Scholar
  35. 35.
    Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E, Dirbas FM, Somlo G, Pera RA, Lao K, Clarke MF (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138:592–603PubMedCrossRefGoogle Scholar
  36. 36.
    Schickel R, Park SM, Murmann AE, Peter ME (2010) miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol Cell 38:908–915PubMedCrossRefGoogle Scholar
  37. 37.
    Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, Barbosa-Morais NL, Teschendorff AE, Green AR, Ellis IO, Tavaré S, Caldas C, Miska EA (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8:R214PubMedCrossRefGoogle Scholar
  38. 38.
    Castellano L, Giamas G, Jacob J, Coombes RC, Lucchesi W, Thiruchelvam P, Barton G, Jiao LR, Wait R, Waxman J, Hannon GJ, Stebbing J (2009) The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response. Proc Natl Acad Sci USA 106:15732–15737PubMedCrossRefGoogle Scholar
  39. 39.
    Leivonen SK, Mäkelä R, Ostling P, Kohonen P, Haapa-Paananen S, Kleivi K, Enerly E, Aakula A, Hellström K, Sahlberg N, Kristensen VN, Børresen-Dale AL, Saviranta P, Perälä M, Kallioniemi O (2009) Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene 28:3926–3936PubMedCrossRefGoogle Scholar
  40. 40.
    Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601PubMedCrossRefGoogle Scholar
  41. 41.
    Iorio MV, Casalini P, Piovan C, Di Leva G, Merlo A, Triulzi T, Ménard S, Croce CM, Tagliabue E (2009) microRNA-205 regulates HER3 in human breast cancer. Cancer Res 69:2195–2200PubMedCrossRefGoogle Scholar
  42. 42.
    Wu H, Zhu S, Mo YY (2009) Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res 19:439–448PubMedCrossRefGoogle Scholar
  43. 43.
    Li H, Bian C, Liao L, Li J, Zhao RC (2011) miR-17–5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Res Treat 126:565–575PubMedCrossRefGoogle Scholar
  44. 44.
    Yu Z, Willmarth NE, Zhou J, Katiyar S, Wang M, Liu Y, McCue PA, Quong AA, Lisanti MP, Pestell RG (2010) microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci USA 107:8231–8236PubMedCrossRefGoogle Scholar
  45. 45.
    Imyanitov EN, Suspitsin EN, Buslov KG, Kuligina ESh, Belogubova EV, Togo AV, Hanson KP (2006) Isolation of nucleic acids from paraffin-embedded archival tissues and other difficult sources. In: Kieleczawa J (ed) DNA sequencing II: optimizing preparation and cleanup. Jones and Bartlett Publishers, Sudbury, pp 85–97Google Scholar
  46. 46.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179PubMedCrossRefGoogle Scholar
  47. 47.
    Peltier HJ, Latham GJ (2008) Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14:844–852PubMedCrossRefGoogle Scholar
  48. 48.
    Aickin M, Gensler H (1996) Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods. Am J Public Health 86:726–728PubMedCrossRefGoogle Scholar
  49. 49.
    Sokolenko AP, Rozanov ME, Mitiushkina NV, Sherina NY, Iyevleva AG, Chekmariova EV, Buslov KG, Shilov ES, Togo AV, Bit-Sava EM, Voskresenskiy DA, Chagunava OL, Devilee P, Cornelisse C, Semiglazov VF, Imyanitov EN (2007) Founder mutations in early-onset, familial and bilateral breast cancer patients from Russia. Fam Cancer 6:281–286PubMedCrossRefGoogle Scholar
  50. 50.
    Iyevleva AG, Suspitsin EN, Kroeze K, Gorodnova TV, Sokolenko AP, Buslov KG, Voskresenskiy DA, Togo AV, Kovalenko SP, Stoep N, Devilee P, Imyanitov EN (2010) Non-founder BRCA1 mutations in Russian breast cancer patients. Cancer Lett 298:258–263PubMedCrossRefGoogle Scholar
  51. 51.
    Imyanitov EN, Moiseyenko VM (2011) Drug therapy for hereditary cancers. Hered Cancer Clin Pract 9:5PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Aglaya G. Iyevleva
    • 1
    • 2
  • Ekatherina Sh. Kuligina
    • 1
  • Nathalia V. Mitiushkina
    • 1
  • Alexandr V. Togo
    • 1
  • Yoshio Miki
    • 3
  • Evgeny N. Imyanitov
    • 1
    • 2
    • 4
  1. 1.Laboratory of Molecular OncologyN. N. Petrov Institute of OncologySt.-PetersburgRussia
  2. 2.Department of Medical GeneticsSt.-Petersburg Pediatric Medical AcademySt.-PetersburgRussia
  3. 3.Department of Genetic DiagnosisCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
  4. 4.Department of OncologySt.-Petersburg Medical Academy for Postgraduate StudiesSt.-PetersburgRussia

Personalised recommendations