Advertisement

Breast Cancer Research and Treatment

, Volume 131, Issue 1, pp 347–350 | Cite as

The postmenopausal hormone replacement therapy-related breast cancer risk is decreased in women carrying the CYP2C19*17 variant

  • Christina JustenhovenEmail author
  • Ofure Obazee
  • Stefan Winter
  • Fergus J. Couch
  • Janet E. Olson
  • Per Hall
  • Ulf Hannelius
  • Jingmei Li
  • Keith Humphreys
  • Gianluca Severi
  • Graham Giles
  • Melissa Southey
  • Laura Baglietto
  • Peter A. Fasching
  • Matthias W. Beckmann
  • Arif B. Ekici
  • Ute Hamann
  • Christian Baisch
  • Volker Harth
  • Sylvia Rabstein
  • Anne Lotz
  • Beate Pesch
  • Thomas Brüning
  • Yon-Dschun Ko
  • Hiltrud Brauch
Letter to the Editor

To the Editor,

Increased steroid hormone levels have been associated with breast cancer risk and they can be affected by the intake of exogenous hormones, in particular during postmenopausal hormone replacement therapy (HRT) [1]. The role of estrogens and progestins in HRT varies. In the placebo controlled WHI study, long-term estrogen plus progestin treatment evolved as a breast cancer risk factor [2, 3, 4], but estrogen treatment alone showed a lower rate of breast cancer [5]. The latter is consistent with laboratory results showing a protective mechanism through estrogen induced apoptosis [6, 7]. The effect of progestins on breast cancer is controversial, biological studies observed proliferative as well as antimitogenic activity of these components [8, 9]. Variations in drug kinetics and dynamics could potentially contribute to the carcinogenic effect and therefore, the HRT-associated breast cancer risk can be addressed from the angle of drug metabolism and its known...

Keywords

Breast Cancer Risk Hormone Replacement Therapy Breast Cancer Case European Descent Breast Cancer Risk Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study and the GENICA study was supported by the Federal Ministry of Education and Research (BMBF) Germany grants 01KW9975/5, 01KW9976/8, 01KW9977/0 and 01KW0114, the Robert Bosch Foundation, Stuttgart, Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Institute of Pathology, Medical Faculty of the University of Bonn, Deutsches Krebsforschungszentrum, Heidelberg, and the Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), Bochum, Germany. The SASBAC study was supported by the Märit and Hans Rausing’s Initiative Against Breast Cancer, the National Institutes of Health (RO1 CA58427), the Agency for Science, Technology and Research (A*STAR; Singapore), and the Swedish Research Council. J Li was a recipient of the A*STAR Graduate Scholarship. KH was supported by the Swedish Research Council (523-2006-972). MSC is a Senior Research Fellow of the Australian National Health and Medical Research Council and a Victorian Breast Cancer Research Consortium Group Leader. MCCS is supported by Cancer Council Victoria and by NHMRC (Grants 209057, 251533, 396414, 504711, 504715). The BBCC study was supported by the ELAN program of the University Hospital Erlangen. All authors disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations.

References

  1. 1.
    Key TJ, Allen NE, Spencer EA, Travis RC (2002) The effect of diet on risk of cancer. Lancet 360:861–868PubMedCrossRefGoogle Scholar
  2. 2.
    Chlebowski RT, Kuller LH, Prentice RL, Stefanick ML, Manson JE, Gass M, Aragaki AK, Ockene JK, Lane DS, Sarto GE, Rajkovic A, Schenken R, Hendrix SL, Ravdin PM, Rohan TE, Yasmeen S, Anderson G (2009) Breast cancer after use of estrogen plus progestin in postmenopausal women. N Engl J Med 360:573–587PubMedCrossRefGoogle Scholar
  3. 3.
    Chlebowski RT, Anderson GL, Gass M, Lane DS, Aragaki AK, Kuller LH, Manson JE, Stefanick ML, Ockene J, Sarto GE, Johnson KC, Wactawski-Wende J, Ravdin PM, Schenken R, Hendrix SL, Rajkovic A, Rohan TE, Yasmeen S, Prentice RL (2010) Estrogen plus progestin and breast cancer incidence and mortality in postmenopausal women. JAMA 304:1684–1692PubMedCrossRefGoogle Scholar
  4. 4.
    Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J (2002) Writing group for the Women’s Health Initiative investigators risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 288:321–333PubMedCrossRefGoogle Scholar
  5. 5.
    LaCroix AZ, Chlebowski RT, Manson JE, Aragaki AK, Johnson KC, Martin L, Margolis KL, Stefanick ML, Brzyski R, Curb JD, Howard BV, Lewis CE, Wactawski-Wende J (2011) Health outcomes after stopping conjugated equine estrogens among postmenopausal women with prior hysterectomy: a randomized controlled trial. JAMA 305:1305–1314PubMedCrossRefGoogle Scholar
  6. 6.
    Jordan VC, Ford LG (2011) Paradoxical clinical effect of estrogen on breast cancer risk: a “New” biology of estrogen-induced apoptosis. Cancer Prev Res 4:633–637CrossRefGoogle Scholar
  7. 7.
    Lewis-Wambi JS, Jordan VC (2009) Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit? Breast Cancer Res 11:206PubMedCrossRefGoogle Scholar
  8. 8.
    Pasqualini JR (2007) Progestins and breast cancer. Gynecol Endocrinol 23(Suppl 1):32–41PubMedCrossRefGoogle Scholar
  9. 9.
    Wiebe JP (2006) Progesterone metabolites in breast cancer. Endocr Relat Cancer 13:717–738PubMedCrossRefGoogle Scholar
  10. 10.
    Cheng ZN, Shu Y, Liu ZQ, Wang LS, Ou-Yang DS, Zhou HH (2001) Role of cytochrome P450 in estradiol metabolism in vitro. Acta Pharmacol Sin 22:148–154PubMedGoogle Scholar
  11. 11.
    Cribb AE, Knight MJ, Dryer D, Guernsey J, Hender K, Tesch M, Saleh TM (2006) Role of polymorphic human cytochrome P450 enzymes in estrone oxidation. Cancer Epidemiol Biomark Prev 15:551–558CrossRefGoogle Scholar
  12. 12.
    Yamazaki H, Shimada T (1997) Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch Biochem Biophys 346:161–169PubMedCrossRefGoogle Scholar
  13. 13.
    Wedlund PJ (2000) The CYP2C19 enzyme polymorphism. Pharmacology 61:174–183PubMedCrossRefGoogle Scholar
  14. 14.
    De Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA (1994) Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol 46:594–598PubMedGoogle Scholar
  15. 15.
    Roddam PL, Rollinson S, Kane E, Roman E, Moorman A, Cartwright R, Morgan GJ (2000) Poor metabolizers at the cytochrome P450 2D6 and 2C19 loci are at increased risk of developing adult acute leukaemia. Pharmacogenetics 10:605–615PubMedCrossRefGoogle Scholar
  16. 16.
    Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L, Ingelman-Sundberg M (2006) A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 79:103–113PubMedCrossRefGoogle Scholar
  17. 17.
    Justenhoven C, Hamann U, Pierl CB, Baisch C, Harth V, Rabstein S, Spickenheuer A, Pesch B, Bruning T, Winter S, Ko YD, Brauch H (2009) CYP2C19*17 is associated with decreased breast cancer risk. Breast Cancer Res Treat 115:391–396PubMedCrossRefGoogle Scholar
  18. 18.
    Justenhoven C, Pierl CB, Haas S, Fischer HP, Baisch C, Hamann U, Harth V, Pesch B, Bruning T, Vollmert C, Illig T, Dippon J, Ko YD, Brauch H (2008) The CYP1B1_1358_GG genotype is associated with estrogen receptor-negative breast cancer. Breast Cancer Res Treat 111:171–177PubMedCrossRefGoogle Scholar
  19. 19.
    Pesch B, Ko Y, Brauch H, Hamann U, Harth V, Rabstein S, Pierl C, Fischer HP, Baisch C, Justenhoven C, Ranft U, Bruning T (2005) Factors modifying the association between hormone-replacement therapy and breast cancer risk. Eur J Epidemiol 20:699–711PubMedCrossRefGoogle Scholar
  20. 20.
    Wedren S, Lovmar L, Humphreys K, Magnusson C, Melhus H, Syvanen AC, Kindmark A, Landegren U, Fermer ML, Stiger F, Persson I, Baron J, Weiderpass E (2004) Oestrogen receptor alpha gene haplotype and postmenopausal breast cancer risk: a case control study. Breast Cancer Res 6:R437–R449PubMedCrossRefGoogle Scholar
  21. 21.
    Olson JE, Ma CX, Pelleymounter LL, Schaid DJ, Pankratz VS, Vierkant RA, Fredericksen ZS, Ingle JN, Wu Y, Couch F, Sellers TA, Weinshilboum RM, Vachon CM (2007) A comprehensive examination of CYP19 variation and breast density. Cancer Epidemiol Biomark Prev 16:623–625CrossRefGoogle Scholar
  22. 22.
    Giles GG, English DR (2002) The Melbourne Collaborative Cohort Study. IARC Sci Publ 156:69–70PubMedGoogle Scholar
  23. 23.
    Schrauder M, Frank S, Strissel PL, Lux MP, Bani MR, Rauh C, Sieber CC, Heusinger K, Hartmann A, Schulz-Wendtland R, Strick R, Beckmann MW, Fasching PA (2008) Single nucleotide polymorphism D1853N of the ATM gene may alter the risk for breast cancer. J Cancer Res Clin Oncol 134:873–882PubMedCrossRefGoogle Scholar
  24. 24.
    Key TJ (2011) Endogenous oestrogens and breast cancer risk in premenopausal and postmenopausal women. Steroids 76:812–815PubMedCrossRefGoogle Scholar
  25. 25.
    Kurzawski M, Gawronska-Szklarz B, Wrzesniewska J, Siuda A, Starzynska T, Drozdzik M (2006) Effect of CYP2C19*17 gene variant on Helicobacter pylori eradication in peptic ulcer patients. Eur J Clin Pharmacol 62:877–880PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Christina Justenhoven
    • 1
    • 2
    Email author
  • Ofure Obazee
    • 1
    • 2
  • Stefan Winter
    • 1
    • 2
  • Fergus J. Couch
    • 3
    • 4
  • Janet E. Olson
    • 3
    • 4
  • Per Hall
    • 5
  • Ulf Hannelius
    • 5
  • Jingmei Li
    • 5
    • 6
  • Keith Humphreys
    • 5
  • Gianluca Severi
    • 7
    • 8
  • Graham Giles
    • 7
    • 8
  • Melissa Southey
    • 9
  • Laura Baglietto
    • 7
    • 8
  • Peter A. Fasching
    • 10
    • 11
  • Matthias W. Beckmann
    • 11
  • Arif B. Ekici
    • 12
  • Ute Hamann
    • 13
  • Christian Baisch
    • 14
  • Volker Harth
    • 15
  • Sylvia Rabstein
    • 15
  • Anne Lotz
    • 15
  • Beate Pesch
    • 15
  • Thomas Brüning
    • 15
  • Yon-Dschun Ko
    • 14
  • Hiltrud Brauch
    • 1
    • 2
  1. 1.Dr. Margarete Fischer-Bosch-Institute of Clinical PharmacologyStuttgartGermany
  2. 2.University of TübingenTübingenGermany
  3. 3.Departments of Laboratory Medicine and PathologyMayo ClinicRochesterUSA
  4. 4.Health Sciences ResearchMayo ClinicRochesterUSA
  5. 5.Department of Medical Epidemiology and BiostatisticsKarolinska InstituteStockholmSweden
  6. 6.Human GeneticsGenome Institute of SingaporeSingaporeSingapore
  7. 7.Cancer Epidemiology CentreThe Cancer Council VictoriaMelbourneAustralia
  8. 8.Centre for Molecular, Environmental, Genetic and Analytic EpidemiologyThe University of MelbourneMelbourneAustralia
  9. 9.Genetic Epidemiology Laboratory, Depatment of PathologyThe University of MelbourneVictoriaAustralia
  10. 10.Division of Hematology and Oncology, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesUSA
  11. 11.Department of Gynecology and ObstetricsUniversity Breast Center, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-Nuremberg, ErlangenErlangenGermany
  12. 12.Institute of Human Genetics, Friedrich-Alexander University Erlangen NurembergErlangenGermany
  13. 13.Molecular Genetics of Breast CancerDeutsches Krebsforschungszentrum (DKFZ)HeidelbergGermany
  14. 14.Department of Internal MedicineEvangelische Kliniken Bonn gGmbH, Johanniter KrankenhausBonnGermany
  15. 15.Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA)BochumGermany

Personalised recommendations