Advertisement

Breast Cancer Research and Treatment

, Volume 133, Issue 2, pp 583–594 | Cite as

Characterisation of amplification patterns and target genes at chromosome 11q13 in CCND1-amplified sporadic and familial breast tumours

  • Karolina Holm
  • Johan Staaf
  • Göran Jönsson
  • Johan Vallon-Christersson
  • Haukur Gunnarsson
  • Adalgeir Arason
  • Linda Magnusson
  • Rosa B. Barkardottir
  • Cecilia Hegardt
  • Markus Ringnér
  • Åke Borg
Preclinical study

Abstract

Amplification of chromosomal region 11q13, containing the cell cycle regulatory gene CCND1, is frequently found in breast cancer and other malignancies. It is associated with the favourable oestrogen receptor (ER)-positive breast tumour phenotype, but also with poor prognosis and treatment failure. 11q13 spans almost 14 Mb and contains more than 200 genes and is affected by various patterns of copy number gains, suggesting complex mechanisms and selective pressure during tumour progression. In this study, we used 32 k tiling BAC array CGH to analyse 94 CCND1-amplified breast tumours from sporadic, hereditary, and familial breast cancers to fine map chromosome 11q13. A set containing 281 CCND1-non-amplified breast tumours was used for comparisons. We used gene expression data to further validate the functional effect of gene amplification. We identified six core regions covering 11q13.1-q14.1 that were amplified in different combinations. The major core contained CCND1, whereas two cores were found proximal of CCND1 and three distal. The majority of the CCND1-amplified tumours were ER-positive and classified as luminal B. Furthermore, we found that CCND1 amplification is associated with a more aggressive phenotype within histological grade 2 tumours and luminal A subtype tumours. Amplification was equally prevalent in familial and sporadic tumours, but strikingly rare in BRCA1- and BRCA2-mutated tumours. We conclude that 11q13 includes many potential target genes in addition to CCND1.

Keywords

CCND1 11q13 Array comparative genomic hybridisation Breast cancer Gene amplification 

Abbreviations

aCGH

Array comparative genomic hybridisation

BFB

Breakage-fusion-bridge

CCND1+

CCND1-amplified tumours

CCND1

CCND1-non-amplified tumours

ER

Oestrogen receptor

FGA

Fraction of genome altered

FISH

Fluorescence in situ hybridisation

GEO

Gene expression omnibus

GEX

Gene expression

GISTIC

Genomic identification of significant targets in cancer

GOBO

Gene expression-based outcome for breast cancer online

OS

Overall survival

PR

Progesterone receptor

SAT

Sample adaptive threshold

SRO

Smallest region of overlap

Notes

Acknowledgments

This study was supported by grants from the Swedish Cancer Society, the Swedish Research Council, the Berta Kamprad Foundation, the Gunnar Nilsson Foundation, the King Gustaf V Jubilee Foundation, the Knut & Alice Wallenberg Foundation, the Foundation for Strategic Research, and the IngaBritt and Arne Lundberg Foundation. The SCIBLU Genomics Centre is supported by governmental funding of clinical research within the national health services (ALF) and by Lund University.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10549_2011_1817_MOESM1_ESM.xls (108 kb)
Supplementary material 1 (XLS 109 kb)
10549_2011_1817_MOESM2_ESM.pdf (549 kb)
Supplementary material 2 (PDF 550 kb)

References

  1. 1.
    Jönsson G, Staaf J, Vallon-Christersson J, Ringner M, Holm K, Hegardt C, Gunnarsson H, Fagerholm R, Strand C, Agnarsson BA, Kilpivaara O, Luts L, Heikkila P, Aittomaki K, Blomqvist C, Loman N, Malmstrom P, Olsson H, Johannsson OT, Arason A, Nevanlinna H, Barkardottir RB, Borg A (2010) Genomic subtypes of breast cancer identified by array comparative genomic hybridization display distinct molecular and clinical characteristics. Breast Cancer Res 12(3):R42. doi: 10.1186/bcr2596 PubMedCrossRefGoogle Scholar
  2. 2.
    Ormandy CJ, Musgrove EA, Hui R, Daly RJ, Sutherland RL (2003) Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Res Treat 78(3):323–335PubMedCrossRefGoogle Scholar
  3. 3.
    Letessier A, Sircoulomb F, Ginestier C, Cervera N, Monville F, Gelsi-Boyer V, Esterni B, Geneix J, Finetti P, Zemmour C, Viens P, Charafe-Jauffret E, Jacquemier J, Birnbaum D, Chaffanet M (2006) Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers. BMC Cancer 6:245PubMedCrossRefGoogle Scholar
  4. 4.
    Karlseder J, Zeillinger R, Schneeberger C, Czerwenka K, Speiser P, Kubista E, Birnbaum D, Gaudray P, Theillet C (1994) Patterns of DNA amplification at band q13 of chromosome 11 in human breast cancer. Genes Chromosom Cancer 9(1):42–48PubMedCrossRefGoogle Scholar
  5. 5.
    Schuuring E (1995) The involvement of the chromosome 11q13 region in human malignancies: cyclin D1 and EMS1 are two new candidate oncogenes—a review. Gene 159(1):83–96PubMedCrossRefGoogle Scholar
  6. 6.
    Albertson DG (2006) Gene amplification in cancer. Trends Genet 22(8):447–455. doi: 10.1016/j.tig.2006.06.007 PubMedCrossRefGoogle Scholar
  7. 7.
    Shuster MI, Han L, Le Beau MM, Davis E, Sawicki M, Lese CM, Park NH, Colicelli J, Gollin SM (2000) A consistent pattern of RIN1 rearrangements in oral squamous cell carcinoma cell lines supports a breakage-fusion-bridge cycle model for 11q13 amplification. Genes Chromosom Cancer 28(2):153–163PubMedCrossRefGoogle Scholar
  8. 8.
    Gisselsson D, Pettersson L, Hoglund M, Heidenblad M, Gorunova L, Wiegant J, Mertens F, Dal Cin P, Mitelman F, Mandahl N (2000) Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc Natl Acad Sci USA 97(10):5357–5362. doi: 10.1073/pnas.090013497 PubMedCrossRefGoogle Scholar
  9. 9.
    Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ (1997) CDK-independent activation of estrogen receptor by cyclin D1. Cell 88(3):405–415PubMedCrossRefGoogle Scholar
  10. 10.
    Musgrove EA, Lee CS, Buckley MF, Sutherland RL (1994) Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc Natl Acad Sci USA 91(17):8022–8026PubMedCrossRefGoogle Scholar
  11. 11.
    Hui R, Campbell DH, Lee CS, McCaul K, Horsfall DJ, Musgrove EA, Daly RJ, Seshadri R, Sutherland RL (1997) EMS1 amplification can occur independently of CCND1 or INT-2 amplification at 11q13 and may identify different phenotypes in primary breast cancer. Oncogene 15(13):1617–1623PubMedCrossRefGoogle Scholar
  12. 12.
    Hui R, Ball JR, Macmillan RD, Kenny FS, Prall OW, Campbell DH, Cornish AL, McClelland RA, Daly RJ, Forbes JF, Blamey RW, Musgrove EA, Robertson JF, Nicholson RI, Sutherland RL (1998) EMS1 gene expression in primary breast cancer: relationship to cyclin D1 and oestrogen receptor expression and patient survival. Oncogene 17(8):1053–1059PubMedCrossRefGoogle Scholar
  13. 13.
    Vaziri SA, Tubbs RR, Darlington G, Casey G (2001) Absence of CCND1 gene amplification in breast tumours of BRCA1 mutation carriers. Mol Pathol 54(4):259–263PubMedCrossRefGoogle Scholar
  14. 14.
    Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R, Meltzer P, Gusterson B, Esteller M, Kallioniemi OP, Wilfond B, Borg A, Trent J (2001) Gene-expression profiles in hereditary breast cancer. N Engl J Med 344(8):539–548PubMedCrossRefGoogle Scholar
  15. 15.
    Brown LA, Johnson K, Leung S, Bismar TA, Benitez J, Foulkes WD, Huntsman DG (2010) Co-amplification of CCND1 and EMSY is associated with an adverse outcome in ER-positive tamoxifen-treated breast cancers. Breast Cancer Res Treat 121(2):347–354. doi: 10.1007/s10549-009-0479-x PubMedCrossRefGoogle Scholar
  16. 16.
    Jirstrom K, Stendahl M, Ryden L, Kronblad A, Bendahl PO, Stal O, Landberg G (2005) Adverse effect of adjuvant tamoxifen in premenopausal breast cancer with cyclin D1 gene amplification. Cancer Res 65(17):8009–8016PubMedGoogle Scholar
  17. 17.
    Hughes-Davies L, Huntsman D, Ruas M, Fuks F, Bye J, Chin SF, Milner J, Brown LA, Hsu F, Gilks B, Nielsen T, Schulzer M, Chia S, Ragaz J, Cahn A, Linger L, Ozdag H, Cattaneo E, Jordanova ES, Schuuring E, Yu DS, Venkitaraman A, Ponder B, Doherty A, Aparicio S, Bentley D, Theillet C, Ponting CP, Caldas C, Kouzarides T (2003) EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 115(5):523–535PubMedCrossRefGoogle Scholar
  18. 18.
    Rodriguez C, Hughes-Davies L, Valles H, Orsetti B, Cuny M, Ursule L, Kouzarides T, Theillet C (2004) Amplification of the BRCA2 pathway gene EMSY in sporadic breast cancer is related to negative outcome. Clin Cancer Res 10(17):5785–5791PubMedCrossRefGoogle Scholar
  19. 19.
    Kirkegaard T, Nielsen KV, Jensen LB, Campbell FM, Muller S, Tovey SM, Brown S, Cooke TG, Bartlett JM (2008) Genetic alterations of CCND1 and EMSY in breast cancers. Histopathology 52(6):698–705PubMedCrossRefGoogle Scholar
  20. 20.
    Gene Expression Omnibus (GEO). http://www.ncbi.nlm.nih.gov/geo/
  21. 21.
    SCIBLU Genomics. http://www.lth.se/sciblu
  22. 22.
    Jönsson G, Staaf J, Olsson E, Heidenblad M, Vallon-Christersson J, Osoegawa K, de Jong P, Oredsson S, Ringner M, Hoglund M, Borg A (2007) High-resolution genomic profiles of breast cancer cell lines assessed by tiling BAC array comparative genomic hybridization. Genes Chromosom Cancer 46(6):543–558PubMedCrossRefGoogle Scholar
  23. 23.
    UCSC Genome Browser. http://genome.ucsc.edu/
  24. 24.
    Holm K, Hegardt C, Staaf J, Vallon-Christersson J, Jonsson G, Olsson H, Borg A, Ringner M (2010) Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns. Breast Cancer Res 12(3):R36. doi: 10.1186/bcr2590 PubMedCrossRefGoogle Scholar
  25. 25.
    Staaf J, Jonsson G, Ringner M, Vallon-Christersson J (2007) Normalization of array-CGH data: influence of copy number imbalances. BMC Genomics 8:382PubMedCrossRefGoogle Scholar
  26. 26.
    Saal LH, Troein C, Vallon-Christersson J, Gruvberger S, Borg A, Peterson C (2002) BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data. Genome Biol 3(8):SOFTWARE0003PubMedCrossRefGoogle Scholar
  27. 27.
    The R Project for Statistical Computing. http://cran.r-project.org
  28. 28.
    Staaf J, Ringner M, Vallon-Christersson J, Jonsson G, Bendahl PO, Holm K, Arason A, Gunnarsson H, Hegardt C, Agnarsson BA, Luts L, Grabau D, Ferno M, Malmstrom P, Johannsson O, Loman N, Barkardottir R, Borg A (2010) Identification of subtypes in HER2-positive breast cancer reveals a gene signature prognostic of outcome. J Clin Oncol 28(11):1813–1820. doi: 10.1200/JCO.2009.22.8775 PubMedCrossRefGoogle Scholar
  29. 29.
    Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D, Vivanco I, Lee JC, Huang JH, Alexander S, Du J, Kau T, Thomas RK, Shah K, Soto H, Perner S, Prensner J, Debiasi RM, Demichelis F, Hatton C, Rubin MA, Garraway LA, Nelson SF, Liau L, Mischel PS, Cloughesy TF, Meyerson M, Golub TA, Lander ES, Mellinghoff IK, Sellers WR (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci USA 104(50):20007–20012. doi: 10.1073/pnas.0710052104 PubMedCrossRefGoogle Scholar
  30. 30.
    Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G (2011) GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 12(4):R41. doi: 10.1186/gb-2011-12-4-r41 PubMedCrossRefGoogle Scholar
  31. 31.
    Honeth G, Bendahl PO, Ringner M, Saal LH, Gruvberger-Saal SK, Lovgren K, Grabau D, Ferno M, Borg A, Hegardt C (2008) The CD44+/CD24− phenotype is enriched in basal-like breast tumors. Breast Cancer Res 10(3):R53PubMedCrossRefGoogle Scholar
  32. 32.
    Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, Livasy C, Carey LA, Reynolds E, Dressler L, Nobel A, Parker J, Ewend MG, Sawyer LR, Wu J, Liu Y, Nanda R, Tretiakova M, Ruiz Orrico A, Dreher D, Palazzo JP, Perreard L, Nelson E, Mone M, Hansen H, Mullins M, Quackenbush JF, Ellis MJ, Olopade OI, Bernard PS, Perou CM (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96PubMedCrossRefGoogle Scholar
  33. 33.
    Ringnér M, Fredlund E, Häkkinen J, Borg Å, Staaf J (2011) GOBO: gene expression-based outcome for breast cancer online. PLoS One 6(3):e17911. doi: 10.1371/journal.pone.0017911 PubMedCrossRefGoogle Scholar
  34. 34.
  35. 35.
    Dahlen A, Debiec-Rychter M, Pedeutour F, Domanski HA, Hoglund M, Bauer HC, Rydholm A, Sciot R, Mandahl N, Mertens F (2003) Clustering of deletions on chromosome 13 in benign and low-malignant lipomatous tumors. Int J Cancer 103(5):616–623. doi: 10.1002/ijc.10864 PubMedCrossRefGoogle Scholar
  36. 36.
    Hicks J, Krasnitz A, Lakshmi B, Navin NE, Riggs M, Leibu E, Esposito D, Alexander J, Troge J, Grubor V, Yoon S, Wigler M, Ye K, Borresen-Dale AL, Naume B, Schlicting E, Norton L, Hagerstrom T, Skoog L, Auer G, Maner S, Lundin P, Zetterberg A (2006) Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res 16(12):1465–1479. doi: 10.1101/gr.5460106 PubMedCrossRefGoogle Scholar
  37. 37.
    Colombo M, Giarola M, Mariani L, Ripamonti CB, De Benedetti V, Sardella M, Losa M, Manoukian S, Peissel B, Pierotti MA, Pilotti S, Radice P (2008) Cyclin D1 expression analysis in familial breast cancers may discriminate BRCAX from BRCA2-linked cases. Mod Pathol 21(10):1262–1270. doi: 10.1038/modpathol.2008.43 PubMedCrossRefGoogle Scholar
  38. 38.
    Aaltonen K, Blomqvist C, Amini RM, Eerola H, Aittomaki K, Heikkila P, Nevanlinna H (2008) Familial breast cancers without mutations in BRCA1 or BRCA2 have low cyclin E and high cyclin D1 in contrast to cancers in BRCA mutation carriers. Clin Cancer Res 14(7):1976–1983. doi: 10.1158/1078-0432.CCR-07-4100 PubMedCrossRefGoogle Scholar
  39. 39.
    Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, Nordgren H, Farmer P, Praz V, Haibe-Kains B, Desmedt C, Larsimont D, Cardoso F, Peterse H, Nuyten D, Buyse M, Van de Vijver MJ, Bergh J, Piccart M, Delorenzi M (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98(4):262–272. doi: 10.1093/jnci/djj052 PubMedCrossRefGoogle Scholar
  40. 40.
    Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T, Chen F, Feiler H, Tokuyasu T, Kingsley C, Dairkee S, Meng Z, Chew K, Pinkel D, Jain A, Ljung BM, Esserman L, Albertson DG, Waldman FM, Gray JW (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541. doi: 10.1016/j.ccr.2006.10.009 PubMedCrossRefGoogle Scholar
  41. 41.
    Gibcus JH, Kok K, Menkema L, Hermsen MA, Mastik M, Kluin PM, van der Wal JE, Schuuring E (2007) High-resolution mapping identifies a commonly amplified 11q13.3 region containing multiple genes flanked by segmental duplications. Hum Genet 121(2):187–201PubMedCrossRefGoogle Scholar
  42. 42.
    Bostner J, Ahnstrom Waltersson M, Fornander T, Skoog L, Nordenskjold B, Stal O (2007) Amplification of CCND1 and PAK1 as predictors of recurrence and tamoxifen resistance in postmenopausal breast cancer. Oncogene 26(49):6997–7005. doi: 10.1038/sj.onc.1210506 PubMedCrossRefGoogle Scholar
  43. 43.
    Dancau AM, Wuth L, Waschow M, Holst F, Krohn A, Choschzick M, Terracciano L, Politis S, Kurtz S, Lebeau A, Friedrichs K, Wencke K, Monni O, Simon R (2010) PPFIA1 and CCND1 are frequently coamplified in breast cancer. Genes Chromosom Cancer 49(1):1–8. doi: 10.1002/gcc.20713 PubMedCrossRefGoogle Scholar
  44. 44.
    Astro V, Asperti C, Cangi G, Doglioni C, de Curtis I (2010) Liprin-alpha1 regulates breast cancer cell invasion by affecting cell motility, invadopodia and extracellular matrix degradation. Oncogene. doi: 10.1038/onc.2010.562

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Karolina Holm
    • 1
    • 2
  • Johan Staaf
    • 1
    • 2
  • Göran Jönsson
    • 1
    • 2
  • Johan Vallon-Christersson
    • 1
    • 2
  • Haukur Gunnarsson
    • 3
  • Adalgeir Arason
    • 3
    • 4
  • Linda Magnusson
    • 5
  • Rosa B. Barkardottir
    • 3
    • 4
  • Cecilia Hegardt
    • 1
  • Markus Ringnér
    • 1
    • 2
  • Åke Borg
    • 1
    • 2
    • 6
  1. 1.Department of Oncology, Clinical SciencesLund UniversityLundSweden
  2. 2.CREATE Health Strategic Centre for Translational Cancer ResearchLund University, BMC C13LundSweden
  3. 3.Department of Pathology, Laboratory of Cell BiologyLandspitali University HospitalReykjavikIceland
  4. 4.Faculty of MedicineUniversity of IcelandReykjavikIceland
  5. 5.Department of Clinical GeneticsUniversity and Regional Laboratories, Skåne University Hospital, Lund UniversityLundSweden
  6. 6.Lund Strategic Research Center for Stem Cell Biology and Cell TherapyLund UniversityLundSweden

Personalised recommendations