Breast Cancer Research and Treatment

, Volume 133, Issue 1, pp 201–214 | Cite as

Role of Src in breast cancer cell migration and invasion in a breast cell/bone-derived cell microenvironment

  • Brant Pohorelic
  • R. Singh
  • S. Parkin
  • K. Koro
  • A.-D. Yang
  • C. EganEmail author
  • A. Magliocco
Preclinical study


The preferential metastasis of breast cancer cells to bone comprises a complex set of events including homing and preferential growth, which may require unique factors produced by bone or other cells in the immediate microenvironment. In this study, an in vitro co-culture system composed of bone mesenchymal stem cells and breast cancer cell lines is used to examine the role of Src kinase on breast cancer cell migration and invasion in the presence of bone-derived cells. This research shows that Src kinase activity in breast cancer cell lines with either high or low levels of endogenous Src activity is increased by bone-derived cell-conditioned medium but not HS68 fibroblast-conditioned medium. Breast cancer cells exhibit enhanced migration in co-culture with bone-derived cells but not HS68 fibroblasts or no co-cultured cells. Inhibition of Src kinase activity using the inhibitors PP2 or saracatinib or using siRNA abrogates the preferential migration of the breast cancer cell lines in response to bone-derived cells. Inhibition of Src activity with saracatinib does not have any significant effect on breast cancer cell invasion in the presence of bone-derived cells. Factors are identified that are produced preferentially by bone-derived cells over HS68 cells that may impact breast cancer cell behavior. This research implicates Src kinase as an important effector of bone-derived cell signals on breast cancer cell migration.


Breast cancer Bone metastasis In vitro co-culture system Tumor microenvironment Src kinase 



The authors would like to thank Lynn Feasel and the staff at the Rockyview General Hospital Clinical Orthopaedics Department for their assistance in obtaining and processing bone samples. They would also like to thank Elizabeth Kornaga for help with the statistical analysis. Alberta Cancer Board, Breast Cancer Operating Grant Project #23141. Canadian Breast Cancer Foundation—Prairies/NWT Chapter, Project “Development of Diagnostic and Therapeutic Agents that recognize a Mutated Form of Src Kinase in Breast Cancer”.

Conflicts of interest

None of the authors have a conflict of interest.


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin. doi: 10.3322/caac.20107
  2. 2.
    Coleman RE, Rubens RD (1987) The clinical course of bone metastases from breast cancer. Br J Cancer 55(1):61–66PubMedCrossRefGoogle Scholar
  3. 3.
    Coleman RE, Smith P, Rubens RD (1998) Clinical course and prognostic factors following bone recurrence from breast cancer. Br J Cancer 77(2):336–340PubMedCrossRefGoogle Scholar
  4. 4.
    Fokas E, Engenhart-Cabillic R, Daniilidis K, Rose F, An HX (2007) Metastasis: the seed and soil theory gains identity. Cancer Metastasis Rev 26(3–4):705–715. doi: 10.1007/s10555-007-9088-5 PubMedCrossRefGoogle Scholar
  5. 5.
    Mundy GR (2002) Metastasis to bone: causes, consequences, and therapeutic opportunities. Nat Rev Cancer 2(8):584–593. doi: 10.1038/nrc867 PubMedCrossRefGoogle Scholar
  6. 6.
    Rabbani SA, Mazar AP (2007) Evaluating distant metastases in breast cancer: from biology to outcomes. Cancer Metastasis Rev 26(3–4):663–674. doi: 10.1007/s10555-007-9085-8 PubMedCrossRefGoogle Scholar
  7. 7.
    Paget S (1889) The distribution of secondary growths in cancer of the breast. Canc Metastasis Rev 8:98Google Scholar
  8. 8.
    Fidler IJ (1970) Metastasis: guantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst 45(4):773–782PubMedGoogle Scholar
  9. 9.
    Fidler IJ, Nicolson GL (1977) Fate of recirculating B16 melanoma metastatic variant cells in parabiotic syngeneic recipients. J Natl Cancer Inst 58(6):1867–1872PubMedGoogle Scholar
  10. 10.
    Klein CA, Seidl S, Petat-Dutter K, Offner S, Geigl JB, Schmidt-Kittler O, Wendler N, Passlick B, Huber RM, Schlimok G, Baeuerle PA, Riethmuller G (2002) Combined transcriptome and genome analysis of single micrometastatic cells. Nat Biotechnol 20(4):387–392. doi: 10.1038/nbt0402-387 PubMedCrossRefGoogle Scholar
  11. 11.
    Morgan TM, Lange PH, Porter MP, Lin DW, Ellis WJ, Gallaher IS, Vessella RL (2009) Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clin Cancer Res 15(2):677–683. doi: 10.1158/1078-0432.CCR-08-1754 PubMedCrossRefGoogle Scholar
  12. 12.
    Pantel K, Schlimok G, Braun S, Kutter D, Lindemann F, Schaller G, Funke I, Izbicki JR, Riethmuller G (1993) Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst 85(17):1419–1424PubMedCrossRefGoogle Scholar
  13. 13.
    Riethdorf S, Wikman H, Pantel K (2008) Review: biological relevance of disseminated tumor cells in cancer patients. Int J Cancer 123(9):1991–2006. doi: 10.1002/ijc.23825 PubMedCrossRefGoogle Scholar
  14. 14.
    Huober J, Thurlimann B (2010) Bone targeted therapy in breast cancer: present and future. Crit Rev Oncol Hematol 74(1):S7–S10. doi: 10.1016/S1040-8428(10)70004-4 PubMedCrossRefGoogle Scholar
  15. 15.
    Rose AA, Siegel PM (2010) Emerging therapeutic targets in breast cancer bone metastasis. Future Oncol 6(1):55–74. doi: 10.2217/fon.09.138 PubMedCrossRefGoogle Scholar
  16. 16.
    Albanese I, Scibetta AG, Migliavacca M, Russo A, Bazan V, Tomasino RM, Colomba P, Tagliavia M, La Farina M (2004) Heterogeneity within and between primary colorectal carcinomas and matched metastases as revealed by analysis of Ki-ras and p53 mutations. Biochem Biophys Res Commun 325(3):784–791. doi: 10.1016/j.bbrc.2004.10.111 PubMedCrossRefGoogle Scholar
  17. 17.
    Gow CH, Chang YL, Hsu YC, Tsai MF, Wu CT, Yu CJ, Yang CH, Lee YC, Yang PC, Shih JY (2009) Comparison of epidermal growth factor receptor mutations between primary and corresponding metastatic tumors in tyrosine kinase inhibitor-naive non-small-cell lung cancer. Ann Oncol 20(4):696–702. doi: 10.1093/annonc/mdn679 PubMedCrossRefGoogle Scholar
  18. 18.
    Stoecklein NH, Klein CA (2010) Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int J Cancer 126(3):589–598. doi: 10.1002/ijc.24916 PubMedCrossRefGoogle Scholar
  19. 19.
    Tortola S, Steinert R, Hantschick M, Peinado MA, Gastinger I, Stosiek P, Lippert H, Schlegel W, Reymond MA (2001) Discordance between K-ras mutations in bone marrow micrometastases and the primary tumor in colorectal cancer. J Clin Oncol 19(11):2837–2843PubMedGoogle Scholar
  20. 20.
    Amir E, Ooi WS, Simmons C, Kahn H, Christakis M, Popovic S, Kalina M, Chesney A, Singh G, Clemons M (2008) Discordance between receptor status in primary and metastatic breast cancer: an exploratory study of bone and bone marrow biopsies. Clin Oncol (R Coll Radiol) 20(10):763–768. doi: 10.1016/j.clon.2008.08.005 CrossRefGoogle Scholar
  21. 21.
    Broom RJ, Tang PA, Simmons C, Bordeleau L, Mulligan AM, O’Malley FP, Miller N, Andrulis IL, Brenner DM, Clemons MJ (2009) Changes in estrogen receptor, progesterone receptor and Her-2/neu status with time: discordance rates between primary and metastatic breast cancer. Anticancer Res 29(5):1557–1562PubMedGoogle Scholar
  22. 22.
    Koro K, Parkin S, Pohorelic B, Yang AD, Narendran A, Egan C, Magliocco A (2010) Interactions between breast cancer cells and bone marrow derived cells in vitro define a role for osteopontin in affecting breast cancer cell migration. Breast Cancer Res Treat. doi: 10.1007/s10549-010-0889-9
  23. 23.
    Wheeler DL, Iida M, Dunn EF (2009) The role of Src in solid tumors. Oncologist 14(7):667–678. doi: 10.1634/theoncologist.2009-0009 PubMedCrossRefGoogle Scholar
  24. 24.
    Kim LC, Song L, Haura EB (2009) Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol 6(10):587–595. doi: 10.1038/nrclinonc.2009.129 PubMedCrossRefGoogle Scholar
  25. 25.
    Morgan L, Nicholson RI, Hiscox S (2008) SRC as a therapeutic target in breast cancer. Endocr Metab Immune Disord Drug Targets 8(4):273–278PubMedCrossRefGoogle Scholar
  26. 26.
    Hilbig A (2008) Src kinase and pancreatic cancer. Recent Results Cancer Res 177:179–185PubMedCrossRefGoogle Scholar
  27. 27.
    Chang YM, Bai L, Liu S, Yang JC, Kung HJ, Evans CP (2008) Src family kinase oncogenic potential and pathways in prostate cancer as revealed by AZD0530. Oncogene 27(49):6365–6375. doi: 10.1038/onc.2008.250 PubMedCrossRefGoogle Scholar
  28. 28.
    Planas-Silva MD, Bruggeman RD, Grenko RT, Stanley Smith J (2006) Role of c-Src and focal adhesion kinase in progression and metastasis of estrogen receptor-positive breast cancer. Biochem Biophys Res Commun 341(1):73–81. doi: 10.1016/j.bbrc.2005.12.164 PubMedCrossRefGoogle Scholar
  29. 29.
    Hiscox S, Morgan L, Green TP, Barrow D, Gee J, Nicholson RI (2006) Elevated Src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells. Breast Cancer Res Treat 97(3):263–274PubMedCrossRefGoogle Scholar
  30. 30.
    Hiscox S, Morgan L, Green T, Nicholson RI (2006) Src as a therapeutic target in anti-hormone/anti-growth factor-resistant breast cancer. Endocr Relat Cancer 13(1):S53–S59PubMedCrossRefGoogle Scholar
  31. 31.
    Myoui A, Nishimura R, Williams PJ, Hiraga T, Tamura D, Michigami T, Mundy GR, Yoneda T (2003) C-SRC tyrosine kinase activity is associated with tumor colonization in bone and lung in an animal model of human breast cancer metastasis. Cancer Res 63(16):5028–5033PubMedGoogle Scholar
  32. 32.
    Frame MC (2002) Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta 1602(2):114–130PubMedGoogle Scholar
  33. 33.
    Zambuzzi WF, Milani R, Teti A (2010) Expanding the role of Src and protein tyrosine phosphatases balance in modulating osteoblast metabolism: lessons from mice. Biochimie. doi: 10.1016/j.biochi.2010.01.002
  34. 34.
    Zambuzzi WF, Milani R, Teti A (2010) Expanding the role of Src and protein-tyrosine phosphatases balance in modulating osteoblast metabolism: lessons from mice. Biochimie 92(4):327–332. doi: 10.1016/j.biochi.2010.01.002 PubMedCrossRefGoogle Scholar
  35. 35.
    de Vries TJ, Mullender MG, van Duin MA, Semeins CM, James N, Green TP, Everts V, Klein-Nulend J (2009) The Src inhibitor AZD0530 reversibly inhibits the formation and activity of human osteoclasts. Mol Cancer Res 7(4):476–488. doi: 10.1158/1541-7786.MCR-08-0219 PubMedCrossRefGoogle Scholar
  36. 36.
    Zou W, Kitaura H, Reeve J, Long F, Tybulewicz VL, Shattil SJ, Ginsberg MH, Ross FP, Teitelbaum SL (2007) Syk, c-Src, the alphavbeta3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J Cell Biol 176(6):877–888. doi: 10.1083/jcb.200611083 PubMedCrossRefGoogle Scholar
  37. 37.
    Miyazaki T, Sanjay A, Neff L, Tanaka S, Horne WC, Baron R (2004) Src kinase activity is essential for osteoclast function. J Biol Chem 279(17):17660–17666PubMedCrossRefGoogle Scholar
  38. 38.
    Liu X, Feng R (2010) Inhibition of epithelial to mesenchymal transition in metastatic breast carcinoma cells by c-Src suppression. Acta Biochim Biophys Sin (Shanghai) 42(7):496–501. doi: 10.1093/abbs/gmq043 CrossRefGoogle Scholar
  39. 39.
    Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M, Foekens JA, Massague J (2009) Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16(1):67–78. doi: 10.1016/j.ccr.2009.05.017 PubMedCrossRefGoogle Scholar
  40. 40.
    Sgroi DC (2009) Breast cancer SRC activity: bad to the bone. Cancer Cell 16(1):1–2. doi: 10.1016/j.ccr.2009.06.010 PubMedCrossRefGoogle Scholar
  41. 41.
    Saad F, Lipton A (2010) SRC kinase inhibition: targeting bone metastases and tumor growth in prostate and breast cancer. Cancer Treat Rev 36(2):177–184. doi: 10.1016/j.ctrv.2009.11.005 PubMedCrossRefGoogle Scholar
  42. 42.
    Hiscox S, Barrett-Lee P, Borley AC, Nicholson RI (2010) Combining Src inhibitors and aromatase inhibitors: a novel strategy for overcoming endocrine resistance and bone loss. Eur J Cancer. doi: 10.1016/j.ejca.2010.04.012
  43. 43.
    Araujo J, Logothetis C (2010) Dasatinib: a potent SRC inhibitor in clinical development for the treatment of solid tumors. Cancer Treat Rev. doi:  10.1016/j.ctrv.2010.02.015
  44. 44.
    Schweppe RE, Kerege AA, French JD, Sharma V, Grzywa RL, Haugen BR (2009) Inhibition of Src with AZD0530 reveals the Src-focal adhesion kinase complex as a novel therapeutic target in papillary and anaplastic thyroid cancer. J Clin Endocrinol Metab 94(6):2199–2203. doi: 10.1210/jc.2008-2511 PubMedCrossRefGoogle Scholar
  45. 45.
    Rajeshkumar NV, Tan AC, De Oliveira E, Womack C, Wombwell H, Morgan S, Warren MV, Walker J, Green TP, Jimeno A, Messersmith WA, Hidalgo M (2009) Antitumor effects and biomarkers of activity of AZD0530, a Src inhibitor, in pancreatic cancer. Clin Cancer Res 15(12):4138–4146. doi: 10.1158/1078-0432.CCR-08-3021 PubMedCrossRefGoogle Scholar
  46. 46.
    Purnell PR, Mack PC, Tepper CG, Evans CP, Green TP, Gumerlock PH, Lara PN, Gandara DR, Kung HJ, Gautschi O (2009) The Src inhibitor AZD0530 blocks invasion and may act as a radiosensitizer in lung cancer cells. J Thorac Oncol 4(4):448–454. doi: 10.1097/JTO.0b013e31819c78fb PubMedCrossRefGoogle Scholar
  47. 47.
    Rucci N, Susa M, Teti A (2008) Inhibition of protein kinase c-Src as a therapeutic approach for cancer and bone metastases. Anticancer Agents Med Chem 8(3):342–349PubMedCrossRefGoogle Scholar
  48. 48.
    Hiscox S, Nicholson RI (2008) Src inhibitors in breast cancer therapy. Expert Opin Ther Targets 12(6):757–767. doi: 10.1517/14728222.12.6.757 PubMedCrossRefGoogle Scholar
  49. 49.
    Lee D, Gautschi O (2006) Clinical development of SRC tyrosine kinase inhibitors in lung cancer. Clin Lung Cancer 7(6):381–384PubMedCrossRefGoogle Scholar
  50. 50.
    Zheng R, Yano S, Matsumori Y, Nakataki E, Muguruma H, Yoshizumi M, Sone S (2005) SRC tyrosine kinase inhibitor, m475271, suppresses subcutaneous growth and production of lung metastasis via inhibition of proliferation, invasion, and vascularization of human lung adenocarcinoma cells. Clin Exp Metastasis 22(3):195–204PubMedCrossRefGoogle Scholar
  51. 51.
    Bagrodia S, Chackalaparampil I, Kmiecik TE, Shalloway D (1991) Altered tyrosine 527 phosphorylation and mitotic activation of p60c-src. Nature 349(6305):172–175PubMedCrossRefGoogle Scholar
  52. 52.
    Bjorge JD, Jakymiw A, Fujita DJ (2000) Selected glimpses into the activation and function of Src kinase. Oncogene 19(49):5620–5635PubMedCrossRefGoogle Scholar
  53. 53.
    Bjorge JD, O’Connor TJ, Fujita DJ (1996) Activation of human pp60c-src. Biochem Cell Biol 74(4):477–484PubMedCrossRefGoogle Scholar
  54. 54.
    Cartwright CA, Kamps MP, Meisler AI, Pipas JM, Eckhart W (1989) pp60c-src activation in human colon carcinoma. J Clin Invest 83(6):2025–2033. doi: 10.1172/JCI114113 PubMedCrossRefGoogle Scholar
  55. 55.
    Cooper JA, Howell B (1993) The when and how of Src regulation. Cell 73(6):1051–1054PubMedCrossRefGoogle Scholar
  56. 56.
    Guarino M (2010) Src signaling in cancer invasion. J Cell Physiol 223(1):14–26. doi: 10.1002/jcp.22011 PubMedGoogle Scholar
  57. 57.
    Superti-Furga G, Courtneidge SA (1995) Structure–function relationships in Src family and related protein tyrosine kinases. Bioessays 17(4):321–330PubMedCrossRefGoogle Scholar
  58. 58.
    Green TP, Fennell M, Whittaker R, Curwen J, Jacobs V, Allen J, Logie A, Hargreaves J, Hickinson DM, Wilkinson RW, Elvin P, Boyer B, Carragher N, Ple PA, Bermingham A, Holdgate GA, Ward WH, Hennequin LF, Davies BR, Costello GF (2009) Preclinical anticancer activity of the potent, oral Src inhibitor AZD0530. Mol Oncol. doi: 10.1016/j.molonc.2009.01.002
  59. 59.
    Previdi S, Maroni P, Matteucci E, Broggini M, Bendinelli P, Desiderio MA (2010) Interaction between human-breast cancer metastasis and bone microenvironment through activated hepatocyte growth factor/Met and beta-catenin/Wnt pathways. Eur J Cancer 46(9):1679–1691. doi: 10.1016/j.ejca.2010.02.036 PubMedCrossRefGoogle Scholar
  60. 60.
    Coskun U, Gunel N, Sancak B, Gunel U, Onuk E, Bayram O, Yilmaz E, Candan S, Ozkan S (2003) Significance of serum vascular endothelial growth factor, insulin-like growth factor-I levels and nitric oxide activity in breast cancer patients. Breast 12(2):104–110PubMedCrossRefGoogle Scholar
  61. 61.
    Coskun U, Gunel N, Toruner FB, Sancak B, Onuk E, Bayram O, Cengiz O, Yilmaz E, Elbeg S, Ozkan S (2003) Serum leptin, prolactin and vascular endothelial growth factor (VEGF) levels in patients with breast cancer. Neoplasma 50(1):41–46PubMedGoogle Scholar
  62. 62.
    Ahmed OI, Adel AM, Diab DR, Gobran NS (2006) Prognostic value of serum level of interleukin-6 and interleukin-8 in metastatic breast cancer patients. Egypt J Immunol 13(2):61–68PubMedGoogle Scholar
  63. 63.
    Bendre MS, Gaddy-Kurten D, Mon-Foote T, Akel NS, Skinner RA, Nicholas RW, Suva LJ (2002) Expression of interleukin 8 and not parathyroid hormone-related protein by human breast cancer cells correlates with bone metastasis in vivo. Cancer Res 62(19):5571–5579PubMedGoogle Scholar
  64. 64.
    Benoy IH, Salgado R, Van Dam P, Geboers K, Van Marck E, Scharpe S, Vermeulen PB, Dirix LY (2004) Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Cancer Res 10(21):7157–7162. doi: 10.1158/1078-0432.CCR-04-0812 PubMedCrossRefGoogle Scholar
  65. 65.
    Salgado R, Junius S, Benoy I, Van Dam P, Vermeulen P, Van Marck E, Huget P, Dirix LY (2003) Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int J Cancer 103(5):642–646. doi: 10.1002/ijc.10833 PubMedCrossRefGoogle Scholar
  66. 66.
    Sasser AK, Sullivan NJ, Studebaker AW, Hendey LF, Axel AE, Hall BM (2007) Interleukin-6 is a potent growth factor for ER-alpha-positive human breast cancer. FASEB J 21(13):3763–3770. doi: 10.1096/fj.07-8832com PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang GJ, Adachi I (1999) Serum interleukin-6 levels correlate to tumor progression and prognosis in metastatic breast carcinoma. Anticancer Res 19(2B):1427–1432PubMedGoogle Scholar
  68. 68.
    Chan PC, Chen YL, Cheng CH, Yu KC, Cary LA, Shu KH, Ho WL, Chen HC (2003) Src phosphorylates Grb2-associated binder 1 upon hepatocyte growth factor stimulation. J Biol Chem 278(45):44075–44082. doi: 10.1074/jbc.M305745200 PubMedCrossRefGoogle Scholar
  69. 69.
    Crostella L, Lidder S, Williams R, Skouteris GG (2001) Hepatocyte growth factor/scatter factor-induces phosphorylation of cortactin in A431 cells in a Src kinase-independent manner. Oncogene 20(28):3735–3745. doi: 10.1038/sj.onc.1204474 PubMedCrossRefGoogle Scholar
  70. 70.
    Matteucci E, Ridolfi E, Maroni P, Bendinelli P, Desiderio MA (2007) c-Src/histone deacetylase 3 interaction is crucial for hepatocyte growth factor dependent decrease of CXCR4 expression in highly invasive breast tumor cells. Mol Cancer Res 5(8):833–845. doi: 10.1158/1541-7786.MCR-07-0054 PubMedCrossRefGoogle Scholar
  71. 71.
    Rahimi N, Hung W, Tremblay E, Saulnier R, Elliott B (1998) c-Src kinase activity is required for hepatocyte growth factor-induced motility and anchorage-independent growth of mammary carcinoma cells. J Biol Chem 273(50):33714–33721PubMedCrossRefGoogle Scholar
  72. 72.
    Duval M, Le Boeuf F, Huot J, Gratton JP (2007) Src-mediated phosphorylation of Hsp90 in response to vascular endothelial growth factor (VEGF) is required for VEGF receptor-2 signaling to endothelial NO synthase. Mol Biol Cell 18(11):4659–4668. doi: 10.1091/mbc.E07-05-0467 PubMedCrossRefGoogle Scholar
  73. 73.
    Eliceiri BP, Puente XS, Hood JD, Stupack DG, Schlaepfer DD, Huang XZ, Sheppard D, Cheresh DA (2002) Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. J Cell Biol 157(1):149–160. doi: 10.1083/jcb.200109079 PubMedCrossRefGoogle Scholar
  74. 74.
    Lesslie DP, Summy JM, Parikh NU, Fan F, Trevino JG, Sawyer TK, Metcalf CA, Shakespeare WC, Hicklin DJ, Ellis LM, Gallick GE (2006) Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases. Br J Cancer 94(11):1710–1717. doi: 10.1038/sj.bjc.6603143 PubMedGoogle Scholar
  75. 75.
    Guy CT, Muthuswamy SK, Cardiff RD, Soriano P, Muller WJ (1994) Activation of the c-Src tyrosine kinase is required for the induction of mammary tumors in transgenic mice. Genes Dev 8(1):23–32PubMedCrossRefGoogle Scholar
  76. 76.
    Muthuswamy SK, Muller WJ (1994) Activation of the Src family of tyrosine kinases in mammary tumorigenesis. Adv Cancer Res 64:111–123PubMedCrossRefGoogle Scholar
  77. 77.
    Muthuswamy SK, Siegel PM, Dankort DL, Webster MA, Muller WJ (1994) Mammary tumors expressing the neu proto-oncogene possess elevated c-Src tyrosine kinase activity. Mol Cell Biol 14(1):735–743PubMedGoogle Scholar
  78. 78.
    Wilson GR, Cramer A, Welman A, Knox F, Swindell R, Kawakatsu H, Clarke RB, Dive C, Bundred NJ (2006) Activated c-SRC in ductal carcinoma in situ correlates with high tumour grade, high proliferation and HER2 positivity. Br J Cancer 95(10):1410–1414. doi: 10.1038/sj.bjc.6603444 PubMedCrossRefGoogle Scholar
  79. 79.
    Zou D, Yoon HS, Anjomshoaa A, Perez D, Fukuzawa R, Guilford P, Humar B (2009) Increased levels of active c-Src distinguish invasive from in situ lobular lesions. Breast Cancer Res 11 (4):R45. doi: 10.1186/bcr2332
  80. 80.
    Boyer B, Bourgeois Y, Poupon MF (2002) Src kinase contributes to the metastatic spread of carcinoma cells. Oncogene 21(15):2347–2356. doi: 10.1038/sj.onc.1205298 PubMedCrossRefGoogle Scholar
  81. 81.
    Edwards J (2010) Src kinase inhibitors: an emerging therapeutic treatment option for prostate cancer. Expert Opin Investig Drugs 19(5):605–614. doi: 10.1517/13543781003789388 PubMedCrossRefGoogle Scholar
  82. 82.
    Elsberger B, Stewart B, Tatarov O, Edwards J (2010) Is Src a viable target for treating solid tumours? Curr Cancer Drug Targets 10(7):683–694PubMedCrossRefGoogle Scholar
  83. 83.
    Onishi T, Hayashi N, Theriault RL, Hortobagyi GN, Ueno NT (2010) Future directions of bone-targeted therapy for metastatic breast cancer. Nat Rev Clin Oncol 7(11):641–651. doi: 10.1038/nrclinonc.2010.134 Google Scholar
  84. 84.
    Eissa SA, Zaki SA, El-Maghraby SM, Kadry DY (2005) Importance of serum IL-18 and RANTES as markers for breast carcinoma progression. J Egypt Natl Canc Inst 17(1):51–55PubMedGoogle Scholar
  85. 85.
    Azenshtein E, Luboshits G, Shina S, Neumark E, Shahbazian D, Weil M, Wigler N, Keydar I, Ben-Baruch A (2002) The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res 62(4):1093–1102PubMedGoogle Scholar
  86. 86.
    Dimberg J, Hugander A, Wagsater D (2006) Protein expression of the chemokine, CCL28, in human colorectal cancer. Int J Oncol 28(2):315–319PubMedGoogle Scholar
  87. 87.
    Kawai Y, Kaidoh M, Yokoyama Y, Sano K, Ohhashi T (2009) Chemokine CCL2 facilitates ICAM-1-mediated interactions of cancer cells and lymphatic endothelial cells in sentinel lymph nodes. Cancer Sci 100(3):419–428. doi: 10.1111/j.1349-7006.2008.01064.x PubMedCrossRefGoogle Scholar
  88. 88.
    Kroeze KL, Jurgens WJ, Doulabi BZ, van Milligen FJ, Scheper RJ, Gibbs S (2009) Chemokine-mediated migration of skin-derived stem cells: predominant role for CCL5/RANTES. J Invest Dermatol 129(6):1569–1581. doi: 10.1038/jid.2008.405 PubMedCrossRefGoogle Scholar
  89. 89.
    Luboshits G, Shina S, Kaplan O, Engelberg S, Nass D, Lifshitz-Mercer B, Chaitchik S, Keydar I, Ben-Baruch A (1999) Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res 59(18):4681–4687PubMedGoogle Scholar
  90. 90.
    Makinoshima H, Dezawa M (2009) Pancreatic cancer cells activate CCL5 expression in mesenchymal stromal cells through the insulin-like growth factor-I pathway. FEBS Lett 583(22):3697–3703. doi: 10.1016/j.febslet.2009.10.061 PubMedCrossRefGoogle Scholar
  91. 91.
    Soria G, Yaal-Hahoshen N, Azenshtein E, Shina S, Leider-Trejo L, Ryvo L, Cohen-Hillel E, Shtabsky A, Ehrlich M, Meshel T, Keydar I, Ben-Baruch A (2008) Concomitant expression of the chemokines RANTES and MCP-1 in human breast cancer: a basis for tumor-promoting interactions. Cytokine 44(1):191–200. doi: 10.1016/j.cyto.2008.08.002 PubMedCrossRefGoogle Scholar
  92. 92.
    Wigler N, Shina S, Kaplan O, Luboshits G, Chaitchik S, Keydar I, Ben-Baruch A (2002) Breast carcinoma: a report on the potential usage of the CC chemokine RANTES as a marker for a progressive disease. Isr Med Assoc J 4(11):940–943PubMedGoogle Scholar
  93. 93.
    Wu Y, Li YY, Matsushima K, Baba T, Mukaida N (2008) CCL3-CCR5 axis regulates intratumoral accumulation of leukocytes and fibroblasts and promotes angiogenesis in murine lung metastasis process. J Immunol 181(9):6384–6393PubMedGoogle Scholar
  94. 94.
    Hoar FJ, Chaudhri S, Wadley MS, Stonelake PS (2003) Co-expression of vascular endothelial growth factor C (VEGF-C) and c-erbB2 in human breast carcinoma. Eur J Cancer 39(12):1698–1703PubMedCrossRefGoogle Scholar
  95. 95.
    Linderholm B, Grankvist K, Wilking N, Johansson M, Tavelin B, Henriksson R (2000) Correlation of vascular endothelial growth factor content with recurrences, survival, and first relapse site in primary node-positive breast carcinoma after adjuvant treatment. J Clin Oncol 18(7):1423–1431PubMedGoogle Scholar
  96. 96.
    Ryden L, Jirstrom K, Haglund M, Stal O, Ferno M (2010) Epidermal growth factor receptor and vascular endothelial growth factor receptor 2 are specific biomarkers in triple-negative breast cancer. Results from a controlled randomized trial with long-term follow-up. Breast Cancer Res Treat 120 (2):491–498. doi: 10.1007/s10549-010-0758-6
  97. 97.
    Jedeszko C, Victor BC, Podgorski I, Sloane BF (2009) Fibroblast hepatocyte growth factor promotes invasion of human mammary ductal carcinoma in situ. Cancer Res 69(23):9148–9155. doi: 10.1158/0008-5472.CAN-09-1043 PubMedCrossRefGoogle Scholar
  98. 98.
    Mine S, Fujisaki T, Kawahara C, Tabata T, Iida T, Yasuda M, Yoneda T, Tanaka Y (2003) Hepatocyte growth factor enhances adhesion of breast cancer cells to endothelial cells in vitro through up-regulation of CD44. Exp Cell Res 288(1):189–197PubMedCrossRefGoogle Scholar
  99. 99.
    Mukhopadhyay D, Tsiokas L, Zhou XM, Foster D, Brugge JS, Sukhatme VP (1995) Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature 375(6532):577–581PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Brant Pohorelic
    • 1
  • R. Singh
    • 1
  • S. Parkin
    • 1
  • K. Koro
    • 1
  • A.-D. Yang
    • 1
  • C. Egan
    • 1
    Email author
  • A. Magliocco
    • 1
  1. 1.Departments of Oncology and Pathology and Laboratory Medicine, Faculty of MedicineUniversity of CalgaryCalgaryCanada

Personalised recommendations