Breast Cancer Research and Treatment

, Volume 133, Issue 1, pp 145–159 | Cite as

Alteration of Y-box binding protein-1 expression modifies the response to endocrine therapy in estrogen receptor-positive breast cancer

  • Tokiko Ito
  • Shinobu Kamijo
  • Hiroto Izumi
  • Kimitoshi Kohno
  • Jun Amano
  • Ken-ichi ItoEmail author
Preclinical Study


Y-box binding protein-1 (YB-1) plays an important role in tumor progression and drug resistance. This study examined whether YB-1 is involved in the alteration of response to endocrine therapy in estrogen receptor (ER)-positive breast cancer cells. MCF7 cells that stably expressed YB-1 (MCF7-YB-1) and vector control cells (MCF7-vector) were established. These cells were used to analyze the expression of the factors related to ER and growth factor receptor signaling pathways and responses to antiestrogens (tamoxifen and fulvestrant) and estrogen responsive element (ERE) activity. The effect of knocking down endogenous YB-1 expression was tested in wild-type MCF7 cells. In addition, the expression of YB-1 and the factors related to ER and growth factor receptor signaling pathways were evaluated in clinical breast cancers treated with preoperative chemotherapy. The expression of HER2, AIB1, p-Erk, and c-Myc was increased in MCF7-YB-1 cells. In contrast, knocking down of YB-1 decreased the expression of these factors but increased the expression of ERα in wild-type MCF7 cells. Furthermore, sensitivity to antiestrogens was decreased in the MCF7-YB-1 in comparison to that in MCF7-vector cells. The introduction of YB-1 into MCF7 cells inhibited apoptosis and cell cycle arrest at G1 phase induced by antiestrogens. In MCF7-YB-1 cells, the expression levels of p-Erk and c-Myc were continuously upregulated when cells were treated with either tamoxifen or fulvestrant. The ERE activity was reduced in MCF7-YB-1 cells in comparison to MCF7-vector cells, and the ERE activity in MCF7-YB-1 cells was inhibited by fulvestrant at a lower concentration than that which inhibited the ERE activity in MCF7-vector cells. In ER-positive clinical breast cancers treated with preoperative chemotherapy, significantly more number of specimens that showed increased or positive YB-1 expression after chemotherapy was positive for HER2 expression. These data suggest that alteration of YB-1 may modify the crosstalk between the ER pathway and HER2 pathway in ER-positive breast cancer cells, and consequently, may alter the response to endocrine therapy in ER-positive breast cancer cells.


YB-1 Breast cancer Endocrine therapy Crosstalk 



We would like to thank Dr. Shin-ichi Hayashi for providing the ERE promoter construct.

Conflicts of interest

The authors declare that they have no competing interests.


  1. 1.
    Yarden Y (2001) Biology of HER2 and its importance in breast cancer. Oncology 61(Suppl 2):1–13PubMedCrossRefGoogle Scholar
  2. 2.
    Nicholson RI, McClelland RA, Robertson JF, Gee JM (1999) Involvement of steroid hormone and growth factor cross-talk in endocrine response in breast cancer. Endocr Relat Cancer 6(3):373–387PubMedCrossRefGoogle Scholar
  3. 3.
    Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, Schiff R (2004) Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96(12):926–935PubMedCrossRefGoogle Scholar
  4. 4.
    Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA, Wong J, Allred DC, Clark GM, Schiff R (2003) Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 95(5):353–361PubMedCrossRefGoogle Scholar
  5. 5.
    Osborne CK, Shou J, Massarweh S, Schiff R (2005) Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clin Cancer Res 11(2 Pt 2):865s–870sPubMedGoogle Scholar
  6. 6.
    Schiff R, Massarweh S, Shou J, Osborne CK (2003) Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response. Clin Cancer Res 9(1 Pt 2):447S–454SPubMedGoogle Scholar
  7. 7.
    Schiff R, Massarweh SA, Shou J, Bharwani L, Mohsin SK, Osborne CK (2004) Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res 10(1Pt 2):331S–336SPubMedCrossRefGoogle Scholar
  8. 8.
    Sakura H, Maekawa T, Imamoto F, Yasuda K, Ishii S (1988) Two human genes isolated by a novel method encode DNA-binding proteins containing a common region of homology. Gene 73(2):499–507PubMedCrossRefGoogle Scholar
  9. 9.
    Didier DK, Schiffenbauer J, Woulfe SL, Zacheis M, Schwartz BD (1988) Characterization of the cDNA encoding a protein binding to the major histocompatibility complex class II Y box. Proc Natl Acad Sci USA 85(19):7322–7326PubMedCrossRefGoogle Scholar
  10. 10.
    Furukawa M, Uchiumi T, Nomoto M, Takano H, Morimoto RI, Naito S, Kuwano M, Kohno K (1998) The role of an inverted CCAAT element in transcriptional activation of the human DNA topoisomerase IIalpha gene by heat shock. J Biol Chem 273(17):10550–10555PubMedCrossRefGoogle Scholar
  11. 11.
    Kohno K, Izumi H, Uchiumi T, Ashizuka M, Kuwano M (2003) The pleiotropic functions of the Y-box-binding protein, YB-1. Bioessays 25(7):691–698. doi: 10.1002/bies.10300 PubMedCrossRefGoogle Scholar
  12. 12.
    Koike K, Uchiumi T, Ohga T, Toh S, Wada M, Kohno K, Kuwano M (1997) Nuclear translocation of the Y-box binding protein by ultraviolet irradiation. FEBS Lett 417(3):390–394PubMedCrossRefGoogle Scholar
  13. 13.
    Jia Z, Barbier L, Stuart H, Amraei M, Pelech S, Dennis JW, Metalnikov P, O’Donnell P, Nabi IR (2005) Tumor cell pseudopodial protrusions. Localized signaling domains coordinating cytoskeleton remodeling, cell adhesion, glycolysis, RNA translocation, and protein translation. J Biol Chem 280(34):30564–30573. doi: 10.1074/jbc.M501754200 PubMedCrossRefGoogle Scholar
  14. 14.
    Wu J, Lee C, Yokom D, Jiang H, Cheang MC, Yorida E, Turbin D, Berquin IM, Mertens PR, Iftner T, Gilks CB, Dunn SE (2006) Disruption of the Y-box binding protein-1 results in suppression of the epidermal growth factor receptor and HER-2. Cancer Res 66(9):4872–4879. doi: 10.1158/0008-5472.CAN-05-3561 PubMedCrossRefGoogle Scholar
  15. 15.
    En-Nia A, Yilmaz E, Klinge U, Lovett DH, Stefanidis I, Mertens PR (2005) Transcription factor YB-1 mediates DNA polymerase alpha gene expression. J Biol Chem 280(9):7702–7711. doi: 10.1074/jbc.M413353200 PubMedCrossRefGoogle Scholar
  16. 16.
    Mertens PR, Harendza S, Pollock AS, Lovett DH (1997) Glomerular mesangial cell-specific transactivation of matrix metalloproteinase 2 transcription is mediated by YB-1. J Biol Chem 272(36):22905–22912PubMedCrossRefGoogle Scholar
  17. 17.
    Kuwano M, Oda Y, Izumi H, Yang SJ, Uchiumi T, Iwamoto Y, Toi M, Fujii T, Yamana H, Kinoshita H, Kamura T, Tsuneyoshi M, Yasumoto K, Kohno K (2004) The role of nuclear Y-box binding protein 1 as a global marker in drug resistance. Mol Cancer Ther 3(11):1485–1492PubMedGoogle Scholar
  18. 18.
    Oda Y, Sakamoto A, Shinohara N, Ohga T, Uchiumi T, Kohno K, Tsuneyoshi M, Kuwano M, Iwamoto Y (1998) Nuclear expression of YB-1 protein correlates with P-glycoprotein expression in human osteosarcoma. Clin Cancer Res 4(9):2273–2277PubMedGoogle Scholar
  19. 19.
    Oda Y, Ohishi Y, Saito T, Hinoshita E, Uchiumi T, Kinukawa N, Iwamoto Y, Kohno K, Kuwano M, Tsuneyoshi M (2003) Nuclear expression of Y-box-binding protein-1 correlates with P-glycoprotein and topoisomerase II alpha expression, and with poor prognosis in synovial sarcoma. J Pathol 199(2):251–258. doi: 10.1002/path.1282 PubMedCrossRefGoogle Scholar
  20. 20.
    Janz M, Harbeck N, Dettmar P, Berger U, Schmidt A, Jurchott K, Schmitt M, Royer HD (2002) Y-box factor YB-1 predicts drug resistance and patient outcome in breast cancer independent of clinically relevant tumor biologic factors HER2, uPA and PAI-1. Int J Cancer 97(3):278–282. doi: 10.1002/ijc.1610 PubMedCrossRefGoogle Scholar
  21. 21.
    Saji H, Toi M, Saji S, Koike M, Kohno K, Kuwano M (2003) Nuclear expression of YB-1 protein correlates with P-glycoprotein expression in human breast carcinoma. Cancer Lett 190(2):191–197PubMedCrossRefGoogle Scholar
  22. 22.
    Kamura T, Yahata H, Amada S, Ogawa S, Sonoda T, Kobayashi H, Mitsumoto M, Kohno K, Kuwano M, Nakano H (1999) Is nuclear expression of Y box-binding protein-1 a new prognostic factor in ovarian serous adenocarcinoma? Cancer 85(11):2450–2454. doi: 10.1002/(SICI)1097-0142(19990601)85:11<2450:AID-CNCR21>3.0.CO;2-U PubMedCrossRefGoogle Scholar
  23. 23.
    Yahata H, Kobayashi H, Kamura T, Amada S, Hirakawa T, Kohno K, Kuwano M, Nakano H (2002) Increased nuclear localization of transcription factor YB-1 in acquired cisplatin-resistant ovarian cancer. J Cancer Res Clin Oncol 128(11):621–626. doi: 10.1007/s00432-002-0386-6 PubMedCrossRefGoogle Scholar
  24. 24.
    Oda Y, Ohishi Y, Basaki Y, Kobayashi H, Hirakawa T, Wake N, Ono M, Nishio K, Kuwano M, Tsuneyoshi M (2007) Prognostic implications of the nuclear localization of Y-box-binding protein-1 and CXCR4 expression in ovarian cancer: their correlation with activated Akt, LRP/MVP and P-glycoprotein expression. Cancer Sci 98(7):1020–1026. doi: 10.1111/j.1349-7006.2007.00492.x PubMedCrossRefGoogle Scholar
  25. 25.
    Gimenez-Bonafe P, Fedoruk MN, Whitmore TG, Akbari M, Ralph JL, Ettinger S, Gleave ME, Nelson CC (2004) YB-1 is upregulated during prostate cancer tumor progression and increases P-glycoprotein activity. Prostate 59(3):337–349. doi: 10.1002/pros.20023 PubMedCrossRefGoogle Scholar
  26. 26.
    Bargou RC, Jurchott K, Wagener C, Bergmann S, Metzner S, Bommert K, Mapara MY, Winzer KJ, Dietel M, Dorken B, Royer HD (1997) Nuclear localization and increased levels of transcription factor YB-1 in primary human breast cancers are associated with intrinsic MDR1 gene expression. Nat Med 3(4):447–450PubMedCrossRefGoogle Scholar
  27. 27.
    Fujita T, Ito K, Izumi H, Kimura M, Sano M, Nakagomi H, Maeno K, Hama Y, Shingu K, Tsuchiya S, Kohno K, Fujimori M (2005) Increased nuclear localization of transcription factor Y-box binding protein 1 accompanied by up-regulation of P-glycoprotein in breast cancer pretreated with paclitaxel. Clin Cancer Res 11(24 Pt 1):8837–8844. doi: 10.1158/1078-0432.CCR-05-0945 PubMedCrossRefGoogle Scholar
  28. 28.
    Yasen M, Kajino K, Kano S, Tobita H, Yamamoto J, Uchiumi T, Kon S, Maeda M, Obulhasim G, Arii S, Hino O (2005) The up-regulation of Y-box binding proteins (DNA binding protein A and Y-box binding protein-1) as prognostic markers of hepatocellular carcinoma. Clin Cancer Res 11(20):7354–7361. doi: 10.1158/1078-0432.CCR-05-1027 PubMedCrossRefGoogle Scholar
  29. 29.
    Shibahara K, Sugio K, Osaki T, Uchiumi T, Maehara Y, Kohno K, Yasumoto K, Sugimachi K, Kuwano M (2001) Nuclear expression of the Y-box binding protein, YB-1, as a novel marker of disease progression in non-small cell lung cancer. Clin Cancer Res 7(10):3151–3155PubMedGoogle Scholar
  30. 30.
    Faury D, Nantel A, Dunn SE, Guiot MC, Haque T, Hauser P, Garami M, Bognar L, Hanzely Z, Liberski PP, Lopez-Aguilar E, Valera ET, Tone LG, Carret AS, Del Maestro RF, Gleave M, Montes JL, Pietsch T, Albrecht S, Jabado N (2007) Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. J Clin Oncol 25(10):1196–1208. doi: 10.1200/JCO.2006.07.8626 PubMedCrossRefGoogle Scholar
  31. 31.
    Shibao K, Takano H, Nakayama Y, Okazaki K, Nagata N, Izumi H, Uchiumi T, Kuwano M, Kohno K, Itoh H (1999) Enhanced coexpression of YB-1 and DNA topoisomerase II alpha genes in human colorectal carcinomas. Int J Cancer 83(6):732–737. doi: 10.1002/(SICI)1097-0215(19991210)83:6<732:AID-IJC6>3.0.CO;2-# PubMedCrossRefGoogle Scholar
  32. 32.
    Fujii T, Kawahara A, Basaki Y, Hattori S, Nakashima K, Nakano K, Shirouzu K, Kohno K, Yanagawa T, Yamana H, Nishio K, Ono M, Kuwano M, Kage M (2008) Expression of HER2 and estrogen receptor alpha depends upon nuclear localization of Y-box binding protein-1 in human breast cancers. Cancer Res 68(5):1504–1512. doi: 10.1158/0008-5472.CAN-07-2362 PubMedCrossRefGoogle Scholar
  33. 33.
    Bergmann S, Royer-Pokora B, Fietze E, Jurchott K, Hildebrandt B, Trost D, Leenders F, Claude JC, Theuring F, Bargou R, Dietel M, Royer HD (2005) YB-1 provokes breast cancer through the induction of chromosomal instability that emerges from mitotic failure and centrosome amplification. Cancer Res 65(10):4078–4087. doi: 10.1158/0008-5472.CAN-04-4056 PubMedCrossRefGoogle Scholar
  34. 34.
    To K, Fotovati A, Reipas KM, Law JH, Hu K, Wang J, Astanehe A, Davies AH, Lee L, Stratford AL, Raouf A, Johnson P, Berquin IM, Royer HD, Eaves CJ, Dunn SE (2010) Y-box binding protein-1 induces the expression of CD44 and CD49f leading to enhanced self-renewal, mammosphere growth, and drug resistance. Cancer Res 70(7):2840–2851. doi: 10.1158/0008-5472.CAN-09-3155 PubMedCrossRefGoogle Scholar
  35. 35.
    Habibi G, Leung S, Law JH, Gelmon K, Masoudi H, Turbin D, Pollak M, Nielsen TO, Huntsman D, Dunn SE (2008) Redefining prognostic factors for breast cancer: YB-1 is a stronger predictor of relapse and disease-specific survival than estrogen receptor or HER-2 across all tumor subtypes. Breast Cancer Res 10(5):R86. doi: 10.1186/bcr2156 PubMedCrossRefGoogle Scholar
  36. 36.
    Gluz O, Mengele K, Schmitt M, Kates R, Diallo-Danebrock R, Neff F, Royer HD, Eckstein N, Mohrmann S, Ting E, Kiechle M, Poremba C, Nitz U, Harbeck N (2009) Y-box-binding protein YB-1 identifies high-risk patients with primary breast cancer benefiting from rapidly cycled tandem high-dose adjuvant chemotherapy. J Clin Oncol 27(36):6144–6151. doi: 10.1200/JCO.2008.19.6261 PubMedCrossRefGoogle Scholar
  37. 37.
    Dahl E, En-Nia A, Wiesmann F, Krings R, Djudjaj S, Breuer E, Fuchs T, Wild PJ, Hartmann A, Dunn SE, Mertens PR (2009) Nuclear detection of Y-box protein-1 (YB-1) closely associates with progesterone receptor negativity and is a strong adverse survival factor in human breast cancer. BMC Cancer 9:410. doi: 10.1186/1471-2407-9-410 PubMedCrossRefGoogle Scholar
  38. 38.
    Imachi H, Murao K, Dobashi H, Bhuyan MM, Cao X, Kontani K, Niki S, Murazawa C, Nakajima H, Kohno N, Yamashita H, Iwase H, Hayashi S, Ishida T, Yamauchi A (2010) Menin, a product of the MENI gene, binds to estrogen receptor to enhance its activity in breast cancer cells: possibility of a novel predictive factor for tamoxifen resistance. Breast Cancer Res Treat 122(2):395–407. doi: 10.1007/s10549-009-0581-0 PubMedCrossRefGoogle Scholar
  39. 39.
    Dalvai M, Bystricky K (2010) Cell cycle and anti-estrogen effects synergize to regulate cell proliferation and ER target gene expression. PLoS One 5(6):e11011. doi: 10.1371/journal.pone.0011011 PubMedCrossRefGoogle Scholar
  40. 40.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874. doi: 10.1073/pnas.19136709898/19/10869 PubMedCrossRefGoogle Scholar
  41. 41.
    van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536. doi: 10.1038/415530a415530a CrossRefGoogle Scholar
  42. 42.
    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826. doi: 10.1056/NEJMoa041588 PubMedCrossRefGoogle Scholar
  43. 43.
    Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF, Stijleman IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167. doi: 10.1200/JCO.2008.18.1370 PubMedCrossRefGoogle Scholar
  44. 44.
    Zahnow CA (2006) ErbB receptors and their ligands in the breast. Expert Rev Mol Med 8(23):1–21. doi: 10.1017/S146239940600010X PubMedCrossRefGoogle Scholar
  45. 45.
    Nicholson RI, Hutcheson IR, Jones HE, Hiscox SE, Giles M, Taylor KM, Gee JM (2007) Growth factor signalling in endocrine and anti-growth factor resistant breast cancer. Rev Endocr Metab Disord 8(3):241–253. doi: 10.1007/s11154-007-9033-5 PubMedCrossRefGoogle Scholar
  46. 46.
    Sommer A, Hoffmann J, Lichtner RB, Schneider MR, Parczyk K (2003) Studies on the development of resistance to the pure antiestrogen Faslodex in three human breast cancer cell lines. J Steroid Biochem Mol Biol 85(1):33–47PubMedCrossRefGoogle Scholar
  47. 47.
    Bouras T, Southey MC, Venter DJ (2001) Overexpression of the steroid receptor coactivator AIB1 in breast cancer correlates with the absence of estrogen and progesterone receptors and positivity for p53 and HER2/neu. Cancer Res 61(3):903–907PubMedGoogle Scholar
  48. 48.
    Kirkegaard T, McGlynn LM, Campbell FM, Muller S, Tovey SM, Dunne B, Nielsen KV, Cooke TG, Bartlett JM (2007) Amplified in breast cancer 1 in human epidermal growth factor receptor-positive tumors of tamoxifen-treated breast cancer patients. Clin Cancer Res 13(5):1405–1411. doi: 10.1158/1078-0432.CCR-06-1933 PubMedCrossRefGoogle Scholar
  49. 49.
    Lahusen T, Henke RT, Kagan BL, Wellstein A, Riegel AT (2009) The role and regulation of the nuclear receptor co-activator AIB1 in breast cancer. Breast Cancer Res Treat 116(2):225–237. doi: 10.1007/s10549-009-0405-2 PubMedCrossRefGoogle Scholar
  50. 50.
    Fan M, Yan PS, Hartman-Frey C, Chen L, Paik H, Oyer SL, Salisbury JD, Cheng AS, Li L, Abbosh PH, Huang TH, Nephew KP (2006) Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant. Cancer Res 66(24):11954–11966. doi: 10.1158/0008-5472.CAN-06-1666 PubMedCrossRefGoogle Scholar
  51. 51.
    McClelland RA, Barrow D, Madden TA, Dutkowski CM, Pamment J, Knowlden JM, Gee JM, Nicholson RI (2001) Enhanced epidermal growth factor receptor signaling in MCF7 breast cancer cells after long-term culture in the presence of the pure antiestrogen ICI 182, 780 (Faslodex). Endocrinology 142(7):2776–2788PubMedCrossRefGoogle Scholar
  52. 52.
    Frogne T, Jepsen JS, Larsen SS, Fog CK, Brockdorff BL, Lykkesfeldt AE (2005) Antiestrogen-resistant human breast cancer cells require activated protein kinase B/Akt for growth. Endocr Relat Cancer 12(3):599–614. doi: 10.1677/erc.1.00946 PubMedCrossRefGoogle Scholar
  53. 53.
    Gu Z, Lee RY, Skaar TC, Bouker KB, Welch JN, Lu J, Liu A, Zhu Y, Davis N, Leonessa F, Brunner N, Wang Y, Clarke R (2002) Association of interferon regulatory factor-1, nucleophosmin, nuclear factor-kappaB, and cyclic AMP response element binding with acquired resistance to Faslodex (ICI 182, 780). Cancer Res 62(12):3428–3437PubMedGoogle Scholar
  54. 54.
    Ohga T, Uchiumi T, Makino Y, Koike K, Wada M, Kuwano M, Kohno K (1998) Direct involvement of the Y-box binding protein YB-1 in genotoxic stress-induced activation of the human multidrug resistance 1 gene. J Biol Chem 273(11):5997–6000PubMedCrossRefGoogle Scholar
  55. 55.
    Stein U, Bergmann S, Scheffer GL, Scheper RJ, Royer HD, Schlag PM, Walther W (2005) YB-1 facilitates basal and 5-fluorouracil-inducible expression of the human major vault protein (MVP) gene. Oncogene 24(22):3606–3618. doi: 10.1038/sj.onc.1208386 PubMedCrossRefGoogle Scholar
  56. 56.
    Goldhirsch A, Glick JH, Gelber RD, Coates AS, Thurlimann B, Senn HJ (2005) Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol 16(10):1569–1583. doi: 10.1093/annonc/mdi326 PubMedCrossRefGoogle Scholar
  57. 57.
    Law JH, Li Y, To K, Wang M, Astanehe A, Lambie K, Dhillon J, Jones SJ, Gleave ME, Eaves CJ, Dunn SE (2010) Molecular decoy to the Y-box binding protein-1 suppresses the growth of breast and prostate cancer cells whilst sparing normal cell viability. PLoS One 5 (9). doi: 10.1371/journal.pone.0012661

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Tokiko Ito
    • 1
  • Shinobu Kamijo
    • 2
  • Hiroto Izumi
    • 3
  • Kimitoshi Kohno
    • 3
  • Jun Amano
    • 2
  • Ken-ichi Ito
    • 1
    Email author
  1. 1.Division of Breast and Endocrine Surgery, Department of SurgeryShinshu University School of MedicineMatsumotoJapan
  2. 2.Department of SurgeryShinshu University School of MedicineMatsumotoJapan
  3. 3.Department of Molecular BiologyUniversity of Occupational & Environmental HealthKitakyushuJapan

Personalised recommendations