Advertisement

Breast Cancer Research and Treatment

, Volume 133, Issue 1, pp 99–109 | Cite as

The tamoxifen metabolite norendoxifen is a potent and selective inhibitor of aromatase (CYP19) and a potential lead compound for novel therapeutic agents

  • Wenjie Jessie Lu
  • Cong Xu
  • Zifan Pei
  • Abdelrahman S. Mayhoub
  • Mark Cushman
  • David A. Flockhart
Preclinical study

Abstract

To improve the treatment of breast cancer, there has been a need for alternative aromatase inhibitors (AIs) that bring about adequate aromatase inhibition, while limiting side effects. Since two tamoxifen metabolites have been documented as AIs, we tested a wide range of tamoxifen metabolites on aromatase in order to better understand structural interactions with aromatase and constructed structure–function relationships as a first step toward the development of novel inhibitors. The ability of ten tamoxifen metabolites to inhibit recombinant aromatase (CYP19) was tested using microsomal incubations. The selectivity of the most potent aromatase inhibitor identified, norendoxifen, was characterized by studying its ability to inhibit CYP450 enzymes important in clinical drug–drug interactions, including CYP2B6, 2C9, 2C19, 2D6, and 3A. Computerized molecular docking with the X-ray crystallographic structure of aromatase was used to describe the detailed biochemical interactions involved. The inhibitory potency order of the tested compounds was as follows: norendoxifen ≫ 4,4′-dihydroxy-tamoxifen > endoxifen > N-desmethyl-tamoxifen, N-desmethyl-4′-hydroxy-tamoxifen, tamoxifen-N-oxide, 4′-hydroxy-tamoxifen, N-desmethyl-droloxifene > 4-hydroxy-tamoxifen, tamoxifen. Norendoxifen inhibited recombinant aromatase via a competitive mechanism with a K i of 35 nM. Norendoxifen inhibited placental aromatase with an IC50 of 90 nM, while it inhibited human liver CYP2C9 and CYP3A with IC50 values of 990 and 908 nM, respectively. Inhibition of human liver CYP2C19 by norendoxifen appeared even weaker. No substantial inhibition of CYP2B6 and CYP2D6 by norendoxifen was observed. These data suggest that multiple metabolites of tamoxifen may contribute to its action in the treatment of breast cancer via aromatase inhibition. Most of all, norendoxifen may be able to serve as a potent and selective lead compound in the development of improved therapeutic agents. The range of structures tested in this study and their pharmacologic potencies provide a reasonable pharmacophore upon which to build novel AIs.

Keywords

Breast cancer Tamoxifen Endoxifen Norendoxifen Aromatase inhibitor Estrogen 

Abbreviations

CYP19

Aromatase.

AI

Aromatase inhibitor.

SERM

Selective estrogen receptor modulator

Endoxifen

4-Hydroxy-N-desmethyl-tamoxifen

Norendoxifen

N,N-didesmethyl-4-hydroxytamoxifen

HPLC

High-performance liquid chromatography

HLMs

Human liver microsomes

CYP

Cytochrome P450

MFC

7-Methoxy-4-trifluoromethylcoumarin

UV

Ultraviolet

IC50

The half maximal inhibitory concentration

Ki

The equilibrium dissociation constant of the inhibitor

Notes

Acknowledgment

This work was supported in part by the National Institutes of Health National Center for Research Resources [Grant K24RR020815] to DAF, by the National Institute for General Medical Sciences [Grants T32GM008425, U01GM061373] to DAF, by a Department of Defense Breast Cancer Research Program Predoctoral Fellowship [W81XWH-11-1-0016] to WJL and by a fellowship to ASM from the Egyptian government.

Conflicts of interest

WJL and DAF are authors of a patent submitted to the US patent office that describes new uses of the chemical structures described herein entitled ‘‘Materials for inhibiting aromatase and method of using the same to diagnose, treat and monitor breast cancer’’. Other authors declare that they have no conflict of interest.

References

  1. 1.
    Burstein HJ, Prestrud AA, Seidenfeld J, Anderson H, Buchholz TA, Davidson NE, Gelmon KE, Giordano SH, Hudis CA, Malin J, Mamounas EP, Rowden D, Solky AJ, Sowers MR, Stearns V, Winer EP, Somerfield MR, Griggs JJ (2010) American society of clinical oncology clinical practice guideline: update on adjuvant endocrine therapy for women with hormone receptor-positive breast cancer. J Clin Oncol 28(23):3784–3796. doi: 10.1200/JCO.2009.26.3756 PubMedCrossRefGoogle Scholar
  2. 2.
    Osborne CK, Zhao H, Fuqua SA (2000) Selective estrogen receptor modulators: structure, function, and clinical use. J Clin Oncol 18(17):3172–3186PubMedGoogle Scholar
  3. 3.
    Furr BJ, Jordan VC (1984) The pharmacology and clinical uses of tamoxifen. Pharmacol Ther 25(2):127–205. doi: 0163-7258(84)90043-3 PubMedCrossRefGoogle Scholar
  4. 4.
    Jin Y, Desta Z, Stearns V, Ward B, Ho H, Lee KH, Skaar T, Storniolo AM, Li L, Araba A, Blanchard R, Nguyen A, Ullmer L, Hayden J, Lemler S, Weinshilboum RM, Rae JM, Hayes DF, Flockhart DA (2005) CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 97(1):30–39. doi: 10.1093/jnci/dji005 PubMedCrossRefGoogle Scholar
  5. 5.
    Lu WJ, Desta Z, Flockhart DA (2011) Tamoxifen metabolites as active inhibitors of aromatase in the treatment of breast cancer. Breast Cancer Res Treat. doi: 10.1007/s10549-011-1428-z
  6. 6.
    Fisher B, Costantino JP, Wickerham DL, Cecchini RS, Cronin WM, Robidoux A, Bevers TB, Kavanah MT, Atkins JN, Margolese RG, Runowicz CD, James JM, Ford LG, Wolmark N (2005) Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst 97(22):1652–1662. doi: 10.1093/jnci/dji372 PubMedCrossRefGoogle Scholar
  7. 7.
    Mortimer JE, Flatt SW, Parker BA, Gold EB, Wasserman L, Natarajan L, Pierce JP (2008) Tamoxifen, hot flashes and recurrence in breast cancer. Breast Cancer Res Treat 108(3):421–426. doi: 10.1007/s10549-007-9612-x PubMedCrossRefGoogle Scholar
  8. 8.
    Henry NL, Rae JM, Li L, Azzouz F, Skaar TC, Desta Z, Sikora MJ, Philips S, Nguyen AT, Storniolo AM, Hayes DF, Flockhart DA, Stearns V (2009) Association between CYP2D6 genotype and tamoxifen-induced hot flashes in a prospective cohort. Breast Cancer Res Treat 117(3):571–575. doi: 10.1007/s10549-009-0309-1 PubMedCrossRefGoogle Scholar
  9. 9.
    Howell A, Cuzick J, Baum M, Buzdar A, Dowsett M, Forbes JF, Hoctin-Boes G, Houghton J, Locker GY, Tobias JS (2005) Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 365(9453):60–62. doi: 10.1016/S0140-6736(04)17666-6 PubMedCrossRefGoogle Scholar
  10. 10.
    Zivian MT, Salgado B (2008) Side effects revisited: women’s experiences with aromatase inhibitors. A report from Breast Cancer Action, San FranciscoGoogle Scholar
  11. 11.
    Goetz MP, Rae JM, Suman VJ, Safgren SL, Ames MM, Visscher DW, Reynolds C, Couch FJ, Lingle WL, Flockhart DA, Desta Z, Perez EA, Ingle JN (2005) Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol 23(36):9312–9318. doi: 10.1200/JCO.2005.03.3266 PubMedCrossRefGoogle Scholar
  12. 12.
    Wegman P, Elingarami S, Carstensen J, Stal O, Nordenskjold B, Wingren S (2007) Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen response in postmenopausal patients with breast cancer. Breast Cancer Res 9(1):R7. doi: 10.1186/bcr1640 PubMedCrossRefGoogle Scholar
  13. 13.
    Nowell SA, Ahn J, Rae JM, Scheys JO, Trovato A, Sweeney C, MacLeod SL, Kadlubar FF, Ambrosone CB (2005) Association of genetic variation in tamoxifen-metabolizing enzymes with overall survival and recurrence of disease in breast cancer patients. Breast Cancer Res Treat 91(3):249–258. doi: 10.1007/s10549-004-7751-x PubMedCrossRefGoogle Scholar
  14. 14.
    Desta Z, Ward BA, Soukhova NV, Flockhart DA (2004) Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 310(3):1062–1075. doi: 10.1124/jpet.104.065607 PubMedCrossRefGoogle Scholar
  15. 15.
    Katzenellenbogen BS, Choi I, Delage-Mourroux R, Ediger TR, Martini PG, Montano M, Sun J, Weis K, Katzenellenbogen JA (2000) Molecular mechanisms of estrogen action: selective ligands and receptor pharmacology. J Steroid Biochem Mol Biol 74(5):279–285. doi: S0960-0760(00)00104-7 PubMedCrossRefGoogle Scholar
  16. 16.
    Lim YC, Desta Z, Flockhart DA, Skaar TC (2005) Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Cancer Chemother Pharmacol 55(5):471–478. doi: 10.1007/s00280-004-0926-7 PubMedCrossRefGoogle Scholar
  17. 17.
    Ahmad A, Shahabuddin S, Sheikh S, Kale P, Krishnappa M, Rane RC, Ahmad I (2010) Endoxifen, a new cornerstone of breast cancer therapy: demonstration of safety, tolerability, and systemic bioavailability in healthy human subjects. Clin Pharmacol Ther 88(6):814–817. doi: 10.1038/clpt.2010.196 PubMedCrossRefGoogle Scholar
  18. 18.
    Ahmad A, Ali SM, Ahmad MU, Sheikh S, Ahmad I (2010) Orally administered endoxifen is a new therapeutic agent for breast cancer. Breast Cancer Res Treat 122(2):579–584. doi: 10.1007/s10549-009-0704-7 PubMedCrossRefGoogle Scholar
  19. 19.
    Hershman DL, Kushi LH, Shao T, Buono D, Kershenbaum A, Tsai WY, Fehrenbacher L, Lin Gomez S, Miles S, Neugut AI (2010) Early discontinuation and nonadherence to adjuvant hormonal therapy in a cohort of 8,769 early-stage breast cancer patients. J Clin Oncol 28(27):4120–4128. doi: 10.1200/JCO.2009.25.9655 PubMedCrossRefGoogle Scholar
  20. 20.
    Ziller V, Kalder M, Albert US, Holzhauer W, Ziller M, Wagner U, Hadji P (2009) Adherence to adjuvant endocrine therapy in postmenopausal women with breast cancer. Ann Oncol 20(3):431–436. doi: 10.1093/annonc/mdn646 PubMedCrossRefGoogle Scholar
  21. 21.
    Partridge AH, LaFountain A, Mayer E, Taylor BS, Winer E, Asnis-Alibozek A (2008) Adherence to initial adjuvant anastrozole therapy among women with early-stage breast cancer. J Clin Oncol 26(4):556–562. doi: 10.1200/JCO.2007.11.5451 PubMedCrossRefGoogle Scholar
  22. 22.
    Thompson AM, Johnson A, Quinlan P, Hillman G, Fontecha M, Bray SE, Purdie CA, Jordan LB, Ferraldeschi R, Latif A, Hadfield KD, Clarke RB, Ashcroft L, Evans DG, Howell A, Nikoloff M, Lawrence J, Newman WG (2010) Comprehensive CYP2D6 genotype and adherence affect outcome in breast cancer patients treated with tamoxifen monotherapy. Breast Cancer Res Treat. doi:  10.1007/s10549-010-1139-x
  23. 23.
    Muftuoglu Y, Mustata G (2010) Pharmacophore modeling strategies for the development of novel nonsteroidal inhibitors of human aromatase (CYP19). Bioorg Med Chem Lett 20(10):3050–3064. doi: 10.1016/j.bmcl.2010.03.113 PubMedCrossRefGoogle Scholar
  24. 24.
    Sun B, Hoshino J, Jermihov K, Marler L, Pezzuto JM, Mesecar AD, Cushman M (2010) Design, synthesis, and biological evaluation of resveratrol analogues as aromatase and quinone reductase 2 inhibitors for chemoprevention of cancer. Bioorg Med Chem 18(14):5352–5366. doi: 10.1016/j.bmc.2010.05.042 PubMedCrossRefGoogle Scholar
  25. 25.
    Yahiaoui S, Pouget C, Buxeraud J, Chulia AJ, Fagnere C (2011) Lead optimization of 4-imidazolylflavans: new promising aromatase inhibitors. Eur J Med Chem 46(6):2541–2545. doi: 10.1016/j.ejmech.2011.03.043 PubMedCrossRefGoogle Scholar
  26. 26.
    Ciolino HP, Dai Z, Nair V (2011) Retinol inhibits aromatase activity and expression in vitro. J Nutr Biochem 22(6):522–526. doi: 10.1016/j.jnutbio.2010.04.004 PubMedCrossRefGoogle Scholar
  27. 27.
    Chen S, Oh SR, Phung S, Hur G, Ye JJ, Kwok SL, Shrode GE, Belury M, Adams LS, Williams D (2006) Anti-aromatase activity of phytochemicals in white button mushrooms (Agaricus bisporus). Cancer Res 66(24):12026–12034. doi: 10.1158/0008-5472.CAN-06-2206 PubMedCrossRefGoogle Scholar
  28. 28.
    Ciolino HP, Wang TT, Sathyamoorthy N (2000) Inhibition of aromatase activity and expression in MCF-7 cells by the chemopreventive retinoid N-(4-hydroxy-phenyl)-retinamide. Br J Cancer 83(3):333–337. doi: 10.1054/bjoc.2000.1269 PubMedCrossRefGoogle Scholar
  29. 29.
    Adams LS, Zhang Y, Seeram NP, Heber D, Chen S (2010) Pomegranate ellagitannin-derived compounds exhibit antiproliferative and antiaromatase activity in breast cancer cells in vitro. Cancer Prev Res (Phila) 3(1):108–113. doi: 10.1158/1940-6207.CAPR-08-0225 CrossRefGoogle Scholar
  30. 30.
    Grube BJ, Eng ET, Kao YC, Kwon A, Chen S (2001) White button mushroom phytochemicals inhibit aromatase activity and breast cancer cell proliferation. J Nutr 131(12):3288–3293PubMedGoogle Scholar
  31. 31.
    Lu WJ, Bies R, Kamden LK, Desta Z, Flockhart DA (2010) Methadone: a substrate and mechanism-based inhibitor of CYP19 (aromatase). Drug Metab Dispos 38(8):1308–1313. doi: 10.1124/dmd.110.032474 PubMedCrossRefGoogle Scholar
  32. 32.
    Lu WJ, Ferlito V, Xu C, Flockhart DA, Caccamese S (2011) Enantiomers of naringenin as pleiotropic, stereoselective inhibitors of cytochrome P450 isoforms. ChiralityGoogle Scholar
  33. 33.
    Stresser DM (2004) High-throughput screening of human cytochrome P450 inhibitors using fluorometric substrates. In: Yan Z, Caldwell GW (eds) Optimization in drug discovery: in vitro methods. Methods in pharmacology and toxicology, pp 215–230. doi:  10.1385/1-59259-800-5:215
  34. 34.
    Jeong S, Woo MM, Flockhart DA, Desta Z (2009) Inhibition of drug metabolizing cytochrome P450s by the aromatase inhibitor drug letrozole and its major oxidative metabolite 4,4′-methanol-bisbenzonitrile in vitro. Cancer Chemother Pharmacol 64(5):867–875. doi: 10.1007/s00280-009-0935-7 PubMedCrossRefGoogle Scholar
  35. 35.
    Ghosh D, Griswold J, Erman M, Pangborn W (2009) Structural basis for androgen specificity and oestrogen synthesis in human aromatase. Nature 457(7226):219–223. doi: 10.1038/nature07614 PubMedCrossRefGoogle Scholar
  36. 36.
    Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52(4):609–623. doi: 10.1002/prot.10465 PubMedCrossRefGoogle Scholar
  37. 37.
    Oberguggenberger A, Hubalek M, Sztankay M, Meraner V, Beer B, Oberacher H, Giesinger J, Kemmler G, Egle D, Gamper EM, Sperner-Unterweger B, Holzner B (2011) Is the toxicity of adjuvant aromatase inhibitor therapy underestimated? Complementary information from patient-reported outcomes (PROs). Breast Cancer Res Treat 128(2):553–561. doi: 10.1007/s10549-011-1378-5 PubMedCrossRefGoogle Scholar
  38. 38.
    Henry NL, Giles JT, Stearns V (2008) Aromatase inhibitor-associated musculoskeletal symptoms: etiology and strategies for management. Oncology 22(12):1401–1408PubMedGoogle Scholar
  39. 39.
    Lien EA, Wester K, Lonning PE, Solheim E, Ueland PM (1991) Distribution of tamoxifen and metabolites into brain tissue and brain metastases in breast cancer patients. Br J Cancer 63(4):641–645PubMedCrossRefGoogle Scholar
  40. 40.
    Johnson MD, Zuo H, Lee KH, Trebley JP, Rae JM, Weatherman RV, Desta Z, Flockhart DA, Skaar TC (2004) Pharmacological characterization of 4-hydroxy-N-desmethyl tamoxifen, a novel active metabolite of tamoxifen. Breast Cancer Res Treat 85(2):151–159. doi: 10.1023/B:BREA.0000025406.31193.e8 PubMedCrossRefGoogle Scholar
  41. 41.
    Tian F, Wu H, Li Z, Wang N, Huang J, Li C, Xie F (2009) Activated PKCalpha/ERK1/2 signaling inhibits tamoxifen-induced apoptosis in C6 cells. Cancer Invest 27(7):802–808. doi: 10.1080/07357900802672720 PubMedCrossRefGoogle Scholar
  42. 42.
    da Rocha AB, Mans DR, Bernard EA, Ruschel C, Logullo AF, Wetmore LA, Leyva A, Schwartsmann G (1999) Tamoxifen inhibits particulate-associated protein kinase C activity, and sensitises cultured human glioblastoma cells not to etoposide but to gamma-radiation and BCNU. Eur J Cancer 35(5):833–839. doi: S0959804999000039 PubMedCrossRefGoogle Scholar
  43. 43.
    Punetha A, Shanmugam K, Sundar D (2011) Insight into the enzyme-inhibitor interactions of the first experimentally determined human aromatase. J Biomol Struct Dyn 28(5):759–771PubMedGoogle Scholar
  44. 44.
    Jordan VC (2007) New insights into the metabolism of tamoxifen and its role in the treatment and prevention of breast cancer. Steroids 72(13):829–842. doi: 10.1016/j.steroids.2007.07.009 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Wenjie Jessie Lu
    • 1
  • Cong Xu
    • 1
  • Zifan Pei
    • 2
  • Abdelrahman S. Mayhoub
    • 3
  • Mark Cushman
    • 3
  • David A. Flockhart
    • 1
  1. 1.Division of Clinical Pharmacology, Department of Pharmacology and ToxicologyIndiana University Simon Cancer Center, Indiana University School of MedicineIndianapolisUSA
  2. 2.Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisUSA
  3. 3.Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy and The Purdue Center for Cancer ResearchPurdue UniversityWest LafayetteUSA

Personalised recommendations