Skip to main content

Advertisement

Log in

Glucocorticoid receptor and breast cancer

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Stress enhances glucocorticoid (GC) synthesis, which alters inflammation and immune responses, as well as cellular proliferation and apoptosis in a number of tissues. Increasingly, stress has been associated with cancer progression, and in particular in breast cancer. Consequently, an operational glucocorticoid receptor system in breast tissue influences breast cancer development. In this review, we summarize the data on the GC/GR system in normal and tumoral breast tissue. We also review the molecular mechanisms by which GCs control apoptosis and proliferation in breast cancer models and how GCs alter the chemotherapy of breast cancer treatment when used in combination. Finally, we discuss the participation of GR in breast tumorigenesis under hormone replacement therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Jemal A et al (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300

    Article  PubMed  Google Scholar 

  2. Kricker A et al (2009) Effects of life event stress and social support on the odds of a > or = 2 cm breast cancer. Cancer Causes Control 20(4):437–447

    Article  PubMed  Google Scholar 

  3. Michael YL et al (2009) Influence of stressors on breast cancer incidence in the women’s health initiative. Health Psychol 28(2):137–146

    Article  PubMed  Google Scholar 

  4. Hermes GL et al (2009) Social isolation dysregulates endocrine and behavioral stress while increasing malignant burden of spontaneous mammary tumors. Proc Natl Acad Sci USA 106(52):22393–22398

    Article  PubMed  CAS  Google Scholar 

  5. Baschant U, Tuckermann J (2010) The role of the glucocorticoid receptor in inflammation and immunity. J Steroid Biochem Mol Biol 120(2–3):69–75

    Article  PubMed  CAS  Google Scholar 

  6. Wintermantel TM et al (2005) The epithelial glucocorticoid receptor is required for the normal timing of cell proliferation during mammary lobuloalveolar development but is dispensable for milk production. Mol Endocrinol 19(2):340–349

    Article  PubMed  CAS  Google Scholar 

  7. Murtagh J et al (2004) Organization of mammary epithelial cells into 3D acinar structures requires glucocorticoid and JNK signaling. J Cell Biol 166(1):133–143

    Article  PubMed  CAS  Google Scholar 

  8. Courtin A et al. (2011) Glucocorticoid receptor activity discriminates between progesterone and medroxyprogesterone acetate effects in breast cells. Breast Cancer Res Treat. PMID:21336598

  9. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  PubMed  CAS  Google Scholar 

  10. Sorlie T et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874

    Article  PubMed  CAS  Google Scholar 

  11. Richardson AL et al (2006) X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9(2):121–132

    Article  PubMed  CAS  Google Scholar 

  12. Teulings FA, van Gilse HA (1977) Demonstration of glucocorticoid receptors in human mammary carcinomas. Horm Res 8(2):107–116

    Article  PubMed  CAS  Google Scholar 

  13. Allegra JC et al (1978) An association between steroid hormone receptors and response to cytotoxic chemotherapy in patients with metastatic breast cancer. Cancer Res 38(11 Pt 2):4299–4304

    PubMed  CAS  Google Scholar 

  14. Allegra JC et al (1979) Distribution, frequency, and quantitative analysis of estrogen, progesterone, androgen, and glucocorticoid receptors in human breast cancer. Cancer Res 39(5):1447–1454

    PubMed  CAS  Google Scholar 

  15. Moran TJ et al (2000) The glucocorticoid receptor mediates a survival signal in human mammary epithelial cells. Cancer Res 60(4):867–872

    PubMed  CAS  Google Scholar 

  16. Schorr K, Furth PA (2000) Induction of bcl-xL expression in mammary epithelial cells is glucocorticoid-dependent but not signal transducer and activator of transcription 5-dependent. Cancer Res 60(21):5950–5953

    PubMed  CAS  Google Scholar 

  17. Mikosz CA et al (2001) Glucocorticoid receptor-mediated protection from apoptosis is associated with induction of the serine/threonine survival kinase gene, sgk-1. J Biol Chem 276(20):16649–16654

    Article  PubMed  CAS  Google Scholar 

  18. Mattern J, Buchler MW, Herr I (2007) Cell cycle arrest by glucocorticoids may protect normal tissue and solid tumors from cancer therapy. Cancer Biol Ther 6(9):1345–1354

    Article  PubMed  CAS  Google Scholar 

  19. Lippman M, Bolan G, Huff K (1976) The effects of glucocorticoids and progesterone on hormone-responsive human breast cancer in long-term tissue culture. Cancer Res 36(12):4602–4609

    PubMed  CAS  Google Scholar 

  20. Osborne CK et al (1979) Direct inhibition of growth and antagonism of insulin action by glucocorticoids in human breast cancer cells in culture. Cancer Res 39(7 Pt 1):2422–2428

    PubMed  CAS  Google Scholar 

  21. Huff KK et al (1988) Multihormonal regulation of insulin-like growth factor-I-related protein in MCF-7 human breast cancer cells. Mol Endocrinol 2(3):200–208

    Article  PubMed  CAS  Google Scholar 

  22. Harris RA et al (1995) The induction of apoptosis in human mammary luminal epithelial cells by expression of activated c-neu and its abrogation by glucocorticoids. Br J Cancer 72(2):386–392

    Article  PubMed  CAS  Google Scholar 

  23. Wu W et al (2004) Microarray analysis reveals glucocorticoid-regulated survival genes that are associated with inhibition of apoptosis in breast epithelial cells. Cancer Res 64(5):1757–1764

    Article  PubMed  CAS  Google Scholar 

  24. Wu W et al (2005) Glucocorticoid receptor-induced MAPK phosphatase-1 (MPK-1) expression inhibits paclitaxel-associated MAPK activation and contributes to breast cancer cell survival. J Biol Chem 280(6):4117–4124

    Article  PubMed  CAS  Google Scholar 

  25. Pang D et al (2006) Dexamethasone decreases xenograft response to Paclitaxel through inhibition of tumor cell apoptosis. Cancer Biol Ther 5(8):933–940

    Article  PubMed  CAS  Google Scholar 

  26. Wang H et al (2004) Dexamethasone as a chemoprotectant in cancer chemotherapy: hematoprotective effects and altered pharmacokinetics and tissue distribution of carboplatin and gemcitabine. Cancer Chemother Pharmacol 53(6):459–467

    Article  PubMed  CAS  Google Scholar 

  27. Wang H et al (2007) Dexamethasone as a chemosensitizer for breast cancer chemotherapy: potentiation of the antitumor activity of adriamycin, modulation of cytokine expression, and pharmacokinetics. Int J Oncol 30(4):947–953

    PubMed  CAS  Google Scholar 

  28. Zhou J, Cidlowski JA (2005) The human glucocorticoid receptor: one gene, multiple proteins and diverse responses. Steroids 70(5–7):407–417

    Article  PubMed  CAS  Google Scholar 

  29. Miesfeld R et al (1984) Characterization of a steroid hormone receptor gene and mRNA in wild-type and mutant cells. Nature 312(5996):779–781

    Article  PubMed  CAS  Google Scholar 

  30. Govindan MV et al (1985) Cloning of the human glucocorticoid receptor cDNA. Nucleic Acids Res 13(23):8293–8304

    Article  PubMed  CAS  Google Scholar 

  31. Galliher-Beckley AJ, Cidlowski JA (2009) Emerging roles of glucocorticoid receptor phosphorylation in modulating glucocorticoid hormone action in health and disease. IUBMB Life 61(10):979–986

    Article  PubMed  CAS  Google Scholar 

  32. Bodwell JE et al (1991) Identification of phosphorylated sites in the mouse glucocorticoid receptor. J Biol Chem 266(12):7549–7555

    PubMed  CAS  Google Scholar 

  33. Krstic MD et al (1997) Mitogen-activated and cyclin-dependent protein kinases selectively and differentially modulate transcriptional enhancement by the glucocorticoid receptor. Mol Cell Biol 17(7):3947–3954

    PubMed  CAS  Google Scholar 

  34. Takabe S, Mochizuki K, Goda T (2008) De-phosphorylation of GR at Ser203 in nuclei associates with GR nuclear translocation and GLUT5 gene expression in Caco-2 cells. Arch Biochem Biophys 475(1):1–6

    Article  PubMed  CAS  Google Scholar 

  35. Miller AL et al (2005) p38 Mitogen-activated protein kinase (MAPK) is a key mediator in glucocorticoid-induced apoptosis of lymphoid cells: correlation between p38 MAPK activation and site-specific phosphorylation of the human glucocorticoid receptor at serine 211. Mol Endocrinol 19(6):1569–1583

    Article  PubMed  CAS  Google Scholar 

  36. Galliher-Beckley AJ et al (2008) Glycogen synthase kinase 3beta-mediated serine phosphorylation of the human glucocorticoid receptor redirects gene expression profiles. Mol Cell Biol 28(24):7309–7322

    Article  PubMed  CAS  Google Scholar 

  37. Itoh M et al (2002) Nuclear export of glucocorticoid receptor is enhanced by c-Jun N-terminal kinase-mediated phosphorylation. Mol Endocrinol 16(10):2382–2392

    Article  PubMed  CAS  Google Scholar 

  38. Wang Z, Frederick J, Garabedian MJ (2002) Deciphering the phosphorylation “code” of the glucocorticoid receptor in vivo. J Biol Chem 277(29):26573–26580

    Article  PubMed  CAS  Google Scholar 

  39. Chen W et al (2008) Glucocorticoid receptor phosphorylation differentially affects target gene expression. Mol Endocrinol 22(8):1754–1766

    Article  PubMed  CAS  Google Scholar 

  40. Blind RD, Garabedian MJ (2008) Differential recruitment of glucocorticoid receptor phospho-isoforms to glucocorticoid-induced genes. J Steroid Biochem Mol Biol 109(1–2):150–157

    Article  PubMed  CAS  Google Scholar 

  41. Wallace AD, Cidlowski JA (2001) Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J Biol Chem 276(46):42714–42721

    Article  PubMed  CAS  Google Scholar 

  42. Webster JC et al (1997) Mouse glucocorticoid receptor phosphorylation status influences multiple functions of the receptor protein. J Biol Chem 272(14):9287–9293

    Article  PubMed  CAS  Google Scholar 

  43. Lien HC et al (2006) Differential expression of glucocorticoid receptor in human breast tissues and related neoplasms. J Pathol 209(3):317–327

    Article  PubMed  CAS  Google Scholar 

  44. Buxant F, Engohan-Aloghe C, Noel JC (2010) Estrogen receptor, progesterone receptor, and glucocorticoid receptor expression in normal breast tissue, breast in situ carcinoma, and invasive breast cancer. Appl Immunohistochem Mol Morphol 18(3):254–257

    Article  PubMed  CAS  Google Scholar 

  45. Horwitz KB, Costlow ME, McGuire WL (1975) MCF-7; a human breast cancer cell line with estrogen, androgen, progesterone, and glucocorticoid receptors. Steroids 26(6):785–795

    Article  PubMed  CAS  Google Scholar 

  46. Tronche F et al (1998) Genetic dissection of glucocorticoid receptor function in mice. Curr Opin Genet Dev 8(5):532–538

    Article  PubMed  CAS  Google Scholar 

  47. Reichardt HM et al (1998) DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93(4):531–541

    Article  PubMed  CAS  Google Scholar 

  48. Conde I et al (2008) Glucocorticoid receptor changes its cellular location with breast cancer development. Histol Histopathol 23(1):77–85

    PubMed  CAS  Google Scholar 

  49. Belova L et al (2009) Glucocorticoid receptor expression in breast cancer associates with older patient age. Breast Cancer Res Treat 116(3):441–447

    Article  PubMed  CAS  Google Scholar 

  50. Chen JQ, Brown TR, Yager JD (2008) Mechanisms of hormone carcinogenesis: evolution of views, role of mitochondria. Adv Exp Med Biol 630:1–18

    Article  PubMed  CAS  Google Scholar 

  51. Lillberg K et al (2003) Stressful life events and risk of breast cancer in 10,808 women: a cohort study. Am J Epidemiol 157(5):415–423

    Article  PubMed  Google Scholar 

  52. Reiche EM, Nunes SO, Morimoto HK (2004) Stress, depression, the immune system, and cancer. Lancet Oncol 5(10):617–625

    Article  PubMed  CAS  Google Scholar 

  53. Roberts FD et al (1996) Self-reported stress and risk of breast cancer. Cancer 77(6):1089–1093

    Article  PubMed  CAS  Google Scholar 

  54. Kruk J, Aboul-Enein HY (2004) Psychological stress and the risk of breast cancer: a case–control study. Cancer Detect Prev 28(6):399–408

    Article  PubMed  Google Scholar 

  55. Morrison N, Eisman J (1993) Role of the negative glucocorticoid regulatory element in glucocorticoid repression of the human osteocalcin promoter. J Bone Miner Res 8(8):969–975

    Article  PubMed  CAS  Google Scholar 

  56. De Bosscher K, Vanden Berghe W, Haegeman G (2003) The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 24(4):488–522

    Article  PubMed  CAS  Google Scholar 

  57. Messmer UK et al (2000) Suppression of apoptosis by glucocorticoids in glomerular endothelial cells: effects on proapoptotic pathways. Br J Pharmacol 129(8):1673–1683

    Article  PubMed  CAS  Google Scholar 

  58. Kerppola TK, Luk D, Curran T (1993) Fos is a preferential target of glucocorticoid receptor inhibition of AP-1 activity in vitro. Mol Cell Biol 13(6):3782–3791

    PubMed  CAS  Google Scholar 

  59. Scheinman RI et al (1995) Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Mol Cell Biol 15(2):943–953

    PubMed  CAS  Google Scholar 

  60. Imai E et al (1993) Glucocorticoid receptor-cAMP response element-binding protein interaction and the response of the phosphoenolpyruvate carboxykinase gene to glucocorticoids. J Biol Chem 268(8):5353–5356

    PubMed  CAS  Google Scholar 

  61. Lin A, Karin M (2003) NF-kappaB in cancer: a marked target. Semin Cancer Biol 13(2):107–114

    Article  PubMed  CAS  Google Scholar 

  62. Herr I et al (2007) Regulation of differential pro- and anti-apoptotic signaling by glucocorticoids. Apoptosis 12(2):271–291

    Article  PubMed  CAS  Google Scholar 

  63. Feng Z et al (1995) Glucocorticoid and progesterone inhibit involution and programmed cell death in the mouse mammary gland. J Cell Biol 131(4):1095–1103

    Article  PubMed  CAS  Google Scholar 

  64. Diamond MI et al (1990) Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science 249(4974):1266–1272

    Article  PubMed  CAS  Google Scholar 

  65. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4(5):E131–E136

    Article  PubMed  CAS  Google Scholar 

  66. Lu A et al (2002) Blockade of AP1 transactivation abrogates the abnormal expression of breast cancer-specific gene 1 in breast cancer cells. J Biol Chem 277(35):31364–31372

    Article  PubMed  CAS  Google Scholar 

  67. Bamberger AM et al (1999) Expression pattern of the AP-1 family in breast cancer: association of fosB expression with a well-differentiated, receptor-positive tumor phenotype. Int J Cancer 84(5):533–538

    Article  PubMed  CAS  Google Scholar 

  68. Milde-Langosch K (2005) The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 41(16):2449–2461

    Article  PubMed  CAS  Google Scholar 

  69. Ozaki T, Nakagawara A (2011) p53: the attractive tumor suppressor in the cancer research field. J Biomed Biotechnol 2011: 603925

  70. Sengupta S, Wasylyk B (2001) Ligand-dependent interaction of the glucocorticoid receptor with p53 enhances their degradation by Hdm2. Genes Dev 15(18):2367–2380

    Article  PubMed  CAS  Google Scholar 

  71. Sengupta S et al (2000) Negative cross-talk between p53 and the glucocorticoid receptor and its role in neuroblastoma cells. EMBO J 19(22):6051–6064

    Article  PubMed  CAS  Google Scholar 

  72. Moll UM, Riou G, Levine AJ (1992) Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci USA 89(15):7262–7266

    Article  PubMed  CAS  Google Scholar 

  73. Maiyar AC et al (1997) Repression of glucocorticoid receptor transactivation and DNA binding of a glucocorticoid response element within the serum/glucocorticoid-inducible protein kinase (sgk) gene promoter by the p53 tumor suppressor protein. Mol Endocrinol 11(3):312–329

    Article  PubMed  CAS  Google Scholar 

  74. Maiyar AC et al (1996) p53 stimulates promoter activity of the sgk, serum/glucocorticoid-inducible serine/threonine protein kinase gene in rodent mammary epithelial cells. J Biol Chem 271(21):12414–12422

    Article  PubMed  CAS  Google Scholar 

  75. Goya L et al (1993) Glucocorticoids induce a G1/G0 cell cycle arrest of Con8 rat mammary tumor cells that is synchronously reversed by steroid withdrawal or addition of transforming growth factor-alpha. Mol Endocrinol 7(9):1121–1132

    Article  PubMed  CAS  Google Scholar 

  76. Urban G et al (2003) Identification of a functional link for the p53 tumor suppressor protein in dexamethasone-induced growth suppression. J Biol Chem 278(11):9747–9753

    Article  PubMed  CAS  Google Scholar 

  77. Gutierrez MC et al (2005) Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J Clin Oncol 23(11):2469–2476

    Article  PubMed  CAS  Google Scholar 

  78. Whyte J et al (2009) Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development. Breast Cancer Res 11(5):209

    Article  PubMed  CAS  Google Scholar 

  79. Kee TH, Vit P, Melendez AJ (2005) Sphingosine kinase signalling in immune cells. Clin Exp Pharmacol Physiol 32(3):153–161

    Article  PubMed  CAS  Google Scholar 

  80. Ewing TM et al (1989) Regulation of epidermal growth factor receptor by progestins and glucocorticoids in human breast cancer cell lines. Int J Cancer 44(4):744–752

    Article  PubMed  CAS  Google Scholar 

  81. Doll F, Pfeilschifter J, Huwiler A (2005) The epidermal growth factor stimulates sphingosine kinase-1 expression and activity in the human mammary carcinoma cell line MCF7. Biochim Biophys Acta 1738(1–3):72–81

    PubMed  Google Scholar 

  82. Grunberg SM et al (2009) Effectiveness of a single-day three-drug regimen of dexamethasone, palonosetron, and aprepitant for the prevention of acute and delayed nausea and vomiting caused by moderately emetogenic chemotherapy. Support Care Cancer 17(5):589–594

    Article  PubMed  Google Scholar 

  83. Herrington JD, Jaskiewicz AD, Song J (2008) Randomized, placebo-controlled, pilot study evaluating aprepitant single dose plus palonosetron and dexamethasone for the prevention of acute and delayed chemotherapy-induced nausea and vomiting. Cancer 112(9):2080–2087

    Article  PubMed  CAS  Google Scholar 

  84. Lu YS et al (2005) Effects of glucocorticoids on the growth and chemosensitivity of carcinoma cells are heterogeneous and require high concentration of functional glucocorticoid receptors. World J Gastroenterol 11(40):6373–6380

    PubMed  CAS  Google Scholar 

  85. Wang H et al (2004) Pretreatment with dexamethasone increases antitumor activity of carboplatin and gemcitabine in mice bearing human cancer xenografts: in vivo activity, pharmacokinetics, and clinical implications for cancer chemotherapy. Clin Cancer Res 10(5):1633–1644

    Article  PubMed  CAS  Google Scholar 

  86. Balkwill F (2002) Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev 13(2):135–141

    Article  PubMed  CAS  Google Scholar 

  87. Loda M et al (1996) Expression of mitogen-activated protein kinase phosphatase-1 in the early phases of human epithelial carcinogenesis. Am J Pathol 149(5):1553–1564

    PubMed  CAS  Google Scholar 

  88. Magi-Galluzzi C et al (1997) Mitogen-activated protein kinase phosphatase 1 is overexpressed in prostate cancers and is inversely related to apoptosis. Lab Invest 76(1):37–51

    PubMed  CAS  Google Scholar 

  89. Braunschweiger PG, Schiffer LM (1981) Antiproliferative effects of corticosteroids in C3H/HeJ mammary tumors and implications for sequential combination chemotherapy. Cancer Res 41(9 Pt 1):3324–3330

    PubMed  CAS  Google Scholar 

  90. Stuhr LE et al (2006) High-dose, short-term, anti-inflammatory treatment with dexamethasone reduces growth and augments the effects of 5-fluorouracil on dimethyl-alpha-benzanthracene-induced mammary tumors in rats. Scand J Clin Lab Invest 66(6):477–486

    Article  PubMed  CAS  Google Scholar 

  91. Hall RE et al (1990) Steroid hormone receptor gene expression in human breast cancer cells: inverse relationship between oestrogen and glucocorticoid receptor messenger RNA levels. Int J Cancer 46(6):1081–1087

    Article  PubMed  CAS  Google Scholar 

  92. de Fazio A et al (1997) Antisense estrogen receptor RNA expression increases epidermal growth factor receptor gene expression in breast cancer cells. Cell Growth Differ 8(8):903–911

    Google Scholar 

  93. Krishnan AV, Swami S, Feldman D (2001) Estradiol inhibits glucocorticoid receptor expression and induces glucocorticoid resistance in MCF-7 human breast cancer cells. J Steroid Biochem Mol Biol 77(1):29–37

    Article  PubMed  CAS  Google Scholar 

  94. Zhang Y et al (2009) Estrogen inhibits glucocorticoid action via protein phosphatase 5 (PP5)-mediated glucocorticoid receptor dephosphorylation. J Biol Chem 284(36):24542–24552

    Article  PubMed  CAS  Google Scholar 

  95. Gong H et al (2008) Glucocorticoids antagonize estrogens by glucocorticoid receptor-mediated activation of estrogen sulfotransferase. Cancer Res 68(18):7386–7393

    Article  PubMed  CAS  Google Scholar 

  96. Allegra JC et al (1979) Relationship between the progesterone, androgen, and glucocorticoid receptor and response rate to endocrine therapy in metastatic breast cancer. Cancer Res 39(6 Pt 1):1973–1979

    PubMed  CAS  Google Scholar 

  97. Wan Y et al (2001) Separable features of the ligand-binding domain determine the differential subcellular localization and ligand-binding specificity of glucocorticoid receptor and progesterone receptor. Mol Endocrinol 15(1):17–31

    Article  PubMed  CAS  Google Scholar 

  98. Deroo BJ, Archer TK (2001) Glucocorticoid receptor-mediated chromatin remodeling in vivo. Oncogene 20(24):3039–3046

    Article  PubMed  CAS  Google Scholar 

  99. Li X et al (2003) Progesterone and glucocorticoid receptors recruit distinct coactivator complexes and promote distinct patterns of local chromatin modification. Mol Cell Biol 23(11):3763–3773

    Article  PubMed  CAS  Google Scholar 

  100. van den Berg HW, Lynch M, Martin JH (1993) The relationship between affinity of progestins and antiprogestins for the progesterone receptor in breast cancer cells (ZR-PR-LT) and ability to down-regulate the receptor: evidence for heterospecific receptor modulation via the glucocorticoid receptor. Eur J Cancer 29A(12):1771–1775

    PubMed  Google Scholar 

  101. Wan Y, Nordeen SK (2003) Overlapping but distinct profiles of gene expression elicited by glucocorticoids and progestins. Recent Prog Horm Res 58:199–226

    Article  PubMed  CAS  Google Scholar 

  102. Buser AC et al (2007) Progesterone receptor repression of prolactin/signal transducer and activator of transcription 5-mediated transcription of the beta-casein gene in mammary epithelial cells. Mol Endocrinol 21(1):106–125

    Article  PubMed  CAS  Google Scholar 

  103. Quirk SJ et al (1985) Progestins specifically suppress alpha-lactalbumin synthesis and secretion. J Steroid Biochem 23(6A):901–905

    Article  PubMed  CAS  Google Scholar 

  104. Wiegratz I, Kuhl H (2004) Progestogen therapies: differences in clinical effects? Trends Endocrinol Metab 15(6):277–285

    Article  PubMed  CAS  Google Scholar 

  105. Poulin R et al (1991) Multiple actions of synthetic “progestins” on the growth of ZR-75–1 human breast cancer cells: an in vitro model for the simultaneous assay of androgen, progestin, estrogen, and glucocorticoid agonistic and antagonistic activities of steroids. Breast Cancer Res Treat 17(3):197–210

    Article  PubMed  CAS  Google Scholar 

  106. Kontula K et al (1983) Binding of progestins to the glucocorticoid receptor. Correlation to their glucocorticoid-like effects on in vitro functions of human mononuclear leukocytes. Biochem Pharmacol 32(9):1511–1518

    Article  PubMed  CAS  Google Scholar 

  107. Parazzini F et al (1993) Treatment with tamoxifen and progestins for metastatic breast cancer in postmenopausal women: a quantitative review of published randomized clinical trials. Oncology 50(6):483–489

    Article  PubMed  CAS  Google Scholar 

  108. Willemse PH et al (1990) Adrenal steroids as parameters of the bioavailability of MA and MPA. Eur J Cancer 26(3):359–362

    Article  PubMed  CAS  Google Scholar 

  109. Foidart JM et al (2007) Hormone therapy and breast cancer risk. Climacteric 10(Suppl 2):54–61

    Article  PubMed  CAS  Google Scholar 

  110. Chlebowski RT et al (2010) Estrogen plus progestin and breast cancer incidence and mortality in postmenopausal women. JAMA 304(15):1684–1692

    Article  PubMed  CAS  Google Scholar 

  111. Hofseth LJ et al (1999) Hormone replacement therapy with estrogen or estrogen plus medroxyprogesterone acetate is associated with increased epithelial proliferation in the normal postmenopausal breast. J Clin Endocrinol Metab 84(12):4559–4565

    Article  PubMed  CAS  Google Scholar 

  112. Wood CE et al (2007) Effects of estradiol with micronized progesterone or medroxyprogesterone acetate on risk markers for breast cancer in postmenopausal monkeys. Breast Cancer Res Treat 101(2):125–134

    Article  PubMed  CAS  Google Scholar 

  113. Murkes D et al (2011) Effects of percutaneous estradiol-oral progesterone versus oral conjugated equine estrogens-medroxyprogesterone acetate on breast cell proliferation and bcl-2 protein in healthy women. Fertil Steril 95(3):1188–1191

    Article  PubMed  CAS  Google Scholar 

  114. Wood CE, Register TC, Cline JM (2009) Transcriptional profiles of progestogen effects in the postmenopausal breast. Breast Cancer Res Treat 114(2):233–242

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Gompel.

Additional information

P. Forgez and A. Gompel have contributed equally to the Review.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilasco, M., Communal, L., Mourra, N. et al. Glucocorticoid receptor and breast cancer. Breast Cancer Res Treat 130, 1–10 (2011). https://doi.org/10.1007/s10549-011-1689-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1689-6

Keywords

Navigation