Breast Cancer Research and Treatment

, Volume 133, Issue 1, pp 61–73 | Cite as

Targeted and intracellular triggered delivery of therapeutics to cancer cells and the tumor microenvironment: impact on the treatment of breast cancer

  • Vera Moura
  • Manuela Lacerda
  • Paulo Figueiredo
  • Maria L. Corvo
  • Maria E. M. Cruz
  • Raquel Soares
  • Maria C. Pedroso de Lima
  • Sérgio Simões
  • João N. Moreira
Preclinical Study

Abstract

Limiting tumor invasion to the surrounding healthy tissues has proven to be clinically relevant for anticancer treatment options. We have demonstrated that, within a solid tumor, it is possible to achieve such a goal with the same nanoparticle by intracellular and triggered targeted drug delivery to more than one cell population. We have identified the nucleolin receptor in endothelial and cancer cells in tissue samples from breast cancer patients, which enabled the design of a F3-peptide-targeted sterically stabilized pH-sensitive liposome. The clinical potential of such strategy was demonstrated by the successful specific cellular association by breast cancer cells harvested from tumors of patients submitted to mastectomy. In vitro, the nanoparticle targeted the nucleolin receptor on a cell and ligand-specific manner and improved cytotoxicity of doxorubicin (used as a model drug) towards breast cancer and endothelial cells by 177- and 162-fold, respectively, relative to the commercially available non-targeted non-pH-sensitive liposomes. Moreover, active accumulation of F3-targeted pH-sensitive liposomes into human orthotopic tumors, implanted in the mammary fat pad of nude mice, was registered for a time point as short as 4 h, reaching 48% of the injected dose/g of tissue. Twenty-four hours post-injection the accumulation of the dual-targeted pH-sensitive nanoparticle in the tumor tissue was 33-fold higher than the non-targeted non-pH-sensitive counterpart. In mice treated with the developed targeted nanoparticle significant decrease of the tumor viable rim area and microvascular density, as well as limited invasion to surrounding healthy tissues were observed (as opposed to other tested controls), which may increase the probability of tumors falling in the category of “negative margins” with reduced risk of relapse.

Keywords

Drug targeting Triggered drug release Angiogenesis Tumor microenvironment Breast cancer 

Supplementary material

10549_2011_1688_MOESM1_ESM.doc (154 kb)
Supplementary material 1 (DOC 154 kb)

References

  1. 1.
    WHO (2009) Fact sheet N°297Google Scholar
  2. 2.
    Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 107(9):4275–4280PubMedCrossRefGoogle Scholar
  3. 3.
    Wu K, Kryczek I, Chen L, Zou W, Welling TH (2009) Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7–H1/programmed death-1 interactions. Cancer Res 69(20):8067–8075PubMedCrossRefGoogle Scholar
  4. 4.
    Stuelten CH, Busch JI, Tang B, Flanders KC, Oshima A, Sutton E, Karpova TS, Roberts AB, Wakefield LM, Niederhuber JE (2010) Transient tumor-fibroblast interactions increase tumor cell malignancy by a TGF-Beta mediated mechanism in a mouse xenograft model of breast cancer. PLoS One 5(3):e9832PubMedCrossRefGoogle Scholar
  5. 5.
    Chetty C, Lakka SS, Bhoopathi P, Rao JS (2010) MMP-2 alters VEGF expression via alphaVbeta3 integrin-mediated PI3 K/AKT signaling in A549 lung cancer cells. Int J Cancer 127(5):1081–1095PubMedCrossRefGoogle Scholar
  6. 6.
    Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120(3):694–705PubMedCrossRefGoogle Scholar
  7. 7.
    Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82(1):4–6PubMedCrossRefGoogle Scholar
  8. 8.
    Feron O (2004) Targeting the tumor vascular compartment to improve conventional cancer therapy. Trends Pharmacol Sci 25(10):536–542PubMedCrossRefGoogle Scholar
  9. 9.
    Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62PubMedCrossRefGoogle Scholar
  10. 10.
    Srivastava M, Pollard HB (1999) Molecular dissection of nucleolin’s role in growth and cell proliferation: new insights. FASEB J 13(14):1911–1922PubMedGoogle Scholar
  11. 11.
    Kleinman HK, Weeks BS, Cannon FB, Sweeney TM, Sephel GC, Clement B, Zain M, Olson MO, Jucker M, Burrous BA (1991) Identification of a 110-kDa nonintegrin cell surface laminin-binding protein which recognizes an A chain neurite-promoting peptide. Arch Biochem Biophys 290(2):320–325PubMedCrossRefGoogle Scholar
  12. 12.
    Christian S, Pilch J, Akerman ME, Porkka K, Laakkonen P, Ruoslahti E (2003) Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol 163(4):871–878PubMedCrossRefGoogle Scholar
  13. 13.
    Simoes S, Moreira JN, Fonseca C, Duzgunes N, de Lima MC (2004) On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev 56(7):947–965PubMedCrossRefGoogle Scholar
  14. 14.
    Slepushkin VA, Simoes S, Dazin P, Newman MS, Guo LS, Pedroso de Lima MC, Duzgunes N (1997) Sterically stabilized pH-sensitive liposomes. Intracellular delivery of aqueous contents and prolonged circulation in vivo. J Biol Chem 272(4):2382–2388PubMedCrossRefGoogle Scholar
  15. 15.
    Ranson MR, Carmichael J, O’Byrne K, Stewart S, Smith D, Howell A (1997) Treatment of advanced breast cancer with sterically stabilized liposomal doxorubicin: results of a multicenter phase II trial. J Clin Oncol 15(10):3185–3191PubMedGoogle Scholar
  16. 16.
    Porkka K, Laakkonen P, Hoffman JA, Bernasconi M, Ruoslahti E (2002) A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci USA 99(11):7444–7449PubMedCrossRefGoogle Scholar
  17. 17.
    Marchio S, Lahdenranta J, Schlingemann RO, Valdembri D, Wesseling P, Arap MA, Hajitou A, Ozawa MG, Trepel M, Giordano RJ, Nanus DM, Dijkman HB, Oosterwijk E, Sidman RL, Cooper MD, Bussolino F, Pasqualini R, Arap W (2004) Aminopeptidase A is a functional target in angiogenic blood vessels. Cancer Cell 5(2):151–162PubMedCrossRefGoogle Scholar
  18. 18.
    Huang Y, Shi H, Zhou H, Song X, Yuan S, Luo Y (2006) The angiogenic function of nucleolin is mediated by vascular endothelial growth factor and nonmuscle myosin. Blood 107(9):3564–3571PubMedCrossRefGoogle Scholar
  19. 19.
    Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, Martin F, Huang A, Barenholz Y (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 54(4):987–992PubMedGoogle Scholar
  20. 20.
    Cailleau R, Olive M, Cruciger QV (1978) Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro 14(11):911–915PubMedCrossRefGoogle Scholar
  21. 21.
    Chen MH, Yip GW, Tse GM, Moriya T, Lui PC, Zin ML, Bay BH, Tan PH (2008) Expression of basal keratins and vimentin in breast cancers of young women correlates with adverse pathologic parameters. Mod Pathol 21(10):1183–1191PubMedCrossRefGoogle Scholar
  22. 22.
    Hardee ME, Eapen RJ, Rabbani ZN, Dreher MR, Marks J, Blackwell KL, Dewhirst MW (2009) Her2/neu signaling blockade improves tumor oxygenation in a multifactorial fashion in Her2/neu+ tumors. Cancer Chemother Pharmacol 63(2):219–228PubMedCrossRefGoogle Scholar
  23. 23.
    Ruoslahti E (2002) Drug targeting to specific vascular sites. Drug Discov Today 7(22):1138–1143PubMedCrossRefGoogle Scholar
  24. 24.
    Fonseca C, Moreira JN, Ciudad CJ, Pedroso de Lima MC, Simoes S (2005) Targeting of sterically stabilised pH-sensitive liposomes to human T-leukaemia cells. Eur J Pharm Biopharm 59(2):359–366PubMedCrossRefGoogle Scholar
  25. 25.
    Ishida T, Kirchmeier MJ, Moase EH, Zalipsky S, Allen TM (2001) Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells. Biochim Biophys Acta 1515(2):144–158PubMedCrossRefGoogle Scholar
  26. 26.
    Baselga J, Mendelsohn J (1994) The epidermal growth factor receptor as a target for therapy in breast carcinoma. Breast Cancer Res Treat 29(1):127–138PubMedCrossRefGoogle Scholar
  27. 27.
    Bowers G, Reardon D, Hewitt T, Dent P, Mikkelsen RB, Valerie K, Lammering G, Amir C, Schmidt-Ullrich RK (2001) The relative role of ErbB1–4 receptor tyrosine kinases in radiation signal transduction responses of human carcinoma cells. Oncogene 20(11):1388–1397PubMedCrossRefGoogle Scholar
  28. 28.
    Lengyel E, Prechtel D, Resau JH, Gauger K, Welk A, Lindemann K, Salanti G, Richter T, Knudsen B, Vande Woude GF, Harbeck N (2005) C-Met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu. Int J Cancer 113(4):678–682PubMedCrossRefGoogle Scholar
  29. 29.
    Moreira JN, Hansen CB, Gaspar R, Allen TM (2001) A growth factor antagonist as a targeting agent for sterically stabilized liposomes in human small cell lung cancer. Biochim Biophys Acta 1514(2):303–317PubMedCrossRefGoogle Scholar
  30. 30.
    Moreira JN, Gaspar R, Allen TM (2001) Targeting Stealth liposomes in a murine model of human small cell lung cancer. Biochim Biophys Acta 1515(2):167–176PubMedCrossRefGoogle Scholar
  31. 31.
    Ishida T, Okada Y, Kobayashi T, Kiwada H (2006) Development of pH-sensitive liposomes that efficiently retain encapsulated doxorubicin (DXR) in blood. Int J Pharm 309(1–2):94–100PubMedCrossRefGoogle Scholar
  32. 32.
    Tozer GM, Kanthou C, Baguley BC (2005) Disrupting tumour blood vessels. Nat Rev Cancer 5(6):423–435PubMedCrossRefGoogle Scholar
  33. 33.
    Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4(6):423–436PubMedCrossRefGoogle Scholar
  34. 34.
    Daenen LG, Shaked Y, Man S, Xu P, Voest EE, Hoffman RM, Chaplin DJ, Kerbel RS (2009) Low-dose metronomic cyclophosphamide combined with vascular disrupting therapy induces potent antitumor activity in preclinical human tumor xenograft models. Mol Cancer Ther 8(10):2872–2881PubMedCrossRefGoogle Scholar
  35. 35.
    Anscher MS, Jones P, Prosnitz LR, Blackstock W, Hebert M, Reddick R, Tucker A, Dodge R, Leight G Jr, Iglehart JD et al (1993) Local failure and margin status in early-stage breast carcinoma treated with conservation surgery and radiation therapy. Ann Surg 218(1):22–28PubMedCrossRefGoogle Scholar
  36. 36.
    Meric F, Mirza NQ, Vlastos G, Buchholz TA, Kuerer HM, Babiera GV, Singletary SE, Ross MI, Ames FC, Feig BW, Krishnamurthy S, Perkins GH, McNeese MD, Strom EA, Valero V, Hunt KK (2003) Positive surgical margins and ipsilateral breast tumor recurrence predict disease-specific survival after breast-conserving therapy. Cancer 97(4):926–933PubMedCrossRefGoogle Scholar
  37. 37.
    Panet-Raymond V, Truong PT, Alexander C, Lesperance M, McDonald RE, Watson PH (2011) Clinicopathologic factors of the recurrent tumor predict outcome in patients with ipsilateral breast tumor recurrence. Cancer 117(10):2035–2043PubMedCrossRefGoogle Scholar
  38. 38.
    Daleke DL, Hong K, Papahadjopoulos D (1990) Endocytosis of liposomes by macrophages: binding, acidification and leakage of liposomes monitored by a new fluorescence assay. Biochim Biophys Acta 1024(2):352–366PubMedCrossRefGoogle Scholar
  39. 39.
    CR BolotinEM, Bar LK, Emanuel SN, Lasic DD, Barenholz Y (1994) Ammonium sulphate gradients for efficient and stable remote loading of amphipathic weak bases into liposomes and ligandoliposomes. J Liposome Res 4:455–479CrossRefGoogle Scholar
  40. 40.
    Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234(3):466–468PubMedGoogle Scholar
  41. 41.
    Soares R, Guo S, Gartner F, Schmitt FC, Russo J (2003) 17 beta-estradiol-mediated vessel assembly and stabilization in tumor angiogenesis requires TGF beta and EGFR crosstalk. Angiogenesis 6(4):271–281PubMedCrossRefGoogle Scholar
  42. 42.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63PubMedCrossRefGoogle Scholar
  43. 43.
    Soares R, Guerreiro S, Botelho M (2007) Elucidating progesterone effects in breast cancer: cross talk with PDGF signaling pathway in smooth muscle cell. J Cell Biochem 100(1):174–183PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Vera Moura
    • 1
    • 2
  • Manuela Lacerda
    • 3
  • Paulo Figueiredo
    • 3
  • Maria L. Corvo
    • 4
  • Maria E. M. Cruz
    • 4
  • Raquel Soares
    • 5
  • Maria C. Pedroso de Lima
    • 1
    • 6
  • Sérgio Simões
    • 1
    • 2
  • João N. Moreira
    • 1
    • 2
  1. 1.Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  2. 2.Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
  3. 3.Portuguese Institute of Oncology FG, EPECoimbraPortugal
  4. 4.Research Institute for Medicines and Pharmaceutical Sciences, Faculty of PharmacyUniversity of LisbonLisbonPortugal
  5. 5.Department of BiochemistryFaculty of Medicine of the University of PortoPortoPortugal
  6. 6.Department of Life SciencesUniversity of CoimbraCoimbraPortugal

Personalised recommendations