Breast Cancer Research and Treatment

, Volume 132, Issue 3, pp 1001–1008 | Cite as

Frondoside A inhibits breast cancer metastasis and antagonizes prostaglandin E receptors EP4 and EP2

  • Xinrong Ma
  • Namita Kundu
  • Peter D. Collin
  • Olga Goloubeva
  • Amy M. Fulton
Preclinical Study

Abstract

Frondoside A, derived from the sea cucumber Cucumaria frondosa has demonstrable anticancer activity in several models, however, the ability of Frondoside A to affect tumor metastasis has not been reported. Using a syngeneic murine model of metastatic breast cancer, we now show that Frondoside A has potent antimetastatic activity. Frondoside A given i.p. to mice bearing mammary gland-implanted mammary tumors, inhibits spontaneous tumor metastasis to the lungs. The elevated Cyclooxygenase-2 activity in many malignancies promotes tumor growth and metastasis by producing high levels of PGE2 which acts on the prostaglandin E receptors, chiefly EP4 and EP2. We examined the ability of Frondoside A to modulate the functions of these EP receptors. We now show that Frondoside A antagonizes the prostaglandin E receptors EP2 and EP4. 3H-PGE2 binding to recombinant EP2 or EP4-expressing cells was inhibited by Frondoside A at low μM concentrations. Likewise, EP4 or EP2-linked activation of intracellular cAMP as well as EP4-mediated ERK1/2 activation were also inhibited by Frondoside A. Consistent with the antimetastatic activity observed in vivo, migration of tumor cells in vitro in response to EP4 or EP2 agonists was also inhibited by Frondoside A. These studies identify a new function for an agent with known antitumor activity, and show that the antimetastatic activity may be due in part to a novel mechanism of action. These studies add to the growing body of evidence that Frondoside A may be a promising new agent with potential to treat cancer and may also represent a potential new modality to antagonize EP4.

Keywords

Frondoside A Prostaglandin EP receptor EP4 EP2 Metastasis 

References

  1. 1.
    Kalinin VI, Aminin DL, Avilov SA, Silchenko AS, Stonik VA (2008) Triterpene glycosides from sea cucumbers (Holothurioidea, Echinodermata). Biological activities and functions. In: Atta-ur-Rahman V (ed) Studies in natural product chemistry. Elsevier, The Netherlands, pp 135–196Google Scholar
  2. 2.
    Li X, Li A, Roginsky AB, Ding X-Z, Woodward C, Collin P, Newman RA, Bell RH, Adrian TE (2008) Review of the apoptosis pathways in pancreatic cancer and the anti-apoptotic effects of the novel sea cucumber compound, Frondoside A. Ann NY Acad Sci 1138:181–198PubMedCrossRefGoogle Scholar
  3. 3.
    Roginsky AB, Ding X-Z, Woodward C, Ujiki MB, Singh B, Bell RH, Collin P, Adrian TE (2010) Anti-pancreatic cancer effects of a polar extract from the edible sea cucumber, Cucumaria frondosa. Pancreas 39:646–652PubMedCrossRefGoogle Scholar
  4. 4.
    Janakiram NB, Mohammed A, Zhang Y, Choi C-I, Woodward C, Collin P, Steele VE, Rao CV (2010) Chemopreventive effects of Frondanol A5, a Cucumaria frondosa extract, against rat colon carcinogenesis and inhibition of human colon cancer cell growth. Cancer Prev Res 3:82–91CrossRefGoogle Scholar
  5. 5.
    Al Marzouqi N, Iratni R, Nemmar A, Arafat K, Al Sultan MAH, Collin P et al (2011) Frondoside A inhibits human breast cancer cell survival, migration, invasion and the growth of breast tumor xenografts. Eur J Pharmacol 651(1–3):18–25Google Scholar
  6. 6.
    Aminin DL, Agafonova IG, Kalinin VI, Silchenko AS, Avilov SA, Stonik VA, Collin PD, Woodward C (2008) Immunomodulatory properties of Frondoside A, a major triterpene glycoside from the North Atlantic commercially harvested sea cucumber Cucumaria frondosa. J Med Food 11:443–453PubMedCrossRefGoogle Scholar
  7. 7.
    Narumiya S, Sugimoto Y, Ushikubi F (1999) Prostanoid receptors: structures properties and functions. Physiol Rev 79:1193–1226PubMedGoogle Scholar
  8. 8.
    Kundu N, Ma X, Holt D, Goloubeva A, Ostrand-Rosenberg S, Fulton AM (2009) Antagonism of the prostaglandin E receptor EP4 inhibits metastasis and enhances NK function. Breast Cancer Res Treat 117:235–242PubMedCrossRefGoogle Scholar
  9. 9.
    Kundu N, Smyth MJ, Samsel L, Fulton AM (2002) Cyclooxygenase inhibitors block cell growth, increase ceramide and inhibit cell cycle. Breast Cancer Res Treat 76:57–64PubMedCrossRefGoogle Scholar
  10. 10.
    Davis TL, Sharif NA (2000) Pharmacological characterization of [3H]-prostaglandin E2 binding to the cloned human EP4 prostanoid receptor. Br J Pharmacol 130:1919–1926PubMedCrossRefGoogle Scholar
  11. 11.
    Ma X, Kundu N, Rifat S, Walser T, Fulton AM (2006) Prostaglandin E receptor EP4 antagonism inhibits breast cancer metastasis. Cancer Res 66:2923–2927PubMedCrossRefGoogle Scholar
  12. 12.
    Fulton AM, Heppner GH (1985) Relationships of prostaglandin E and Natural Killer sensitivity to metastatic potential in murine mammary adenocarcinomas. Cancer Res 45:4779–4784PubMedGoogle Scholar
  13. 13.
    Kundu N, Fulton AM (2002) Selective cyclooxygenase [COX]-1 or COX-2 inhibitors control metastatic disease in a murine model of breast cancer. Cancer Res 62:2343–2346PubMedGoogle Scholar
  14. 14.
    Ristimaki A, Sivula A, Lundin M et al (2002) Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res 62:632–635PubMedGoogle Scholar
  15. 15.
    Timoshenko AV, Xu G, Chakrabarti S, Lala PK, Chakraborty C (2003) Role of prostaglandin E2 receptors in migration of murine and human breast cancer cells. Exp Cell Res 289:265–274PubMedCrossRefGoogle Scholar
  16. 16.
    Wang D, DuBois RN (2010) Eicosanoids and cancer. Nat Rev 10:181–192CrossRefGoogle Scholar
  17. 17.
    Robertson FM, Simeone A-M, Lucci A, McMurray JS, Ghosh S, Cristofanilli M (2010) Differential regulation of the aggressive phenotype of inflammatory breast cancer cells by prostanoid receptors EP3 and EP4. Cancer 116:2806–2814PubMedCrossRefGoogle Scholar
  18. 18.
    Yang L, Huang Y, Porta R, Yanagisawa K, Gonzalez A, Segi E et al (2006) Host and direct antitumor effects and profound reduction in tumor metastasis with selective EP4 receptor antagonism. Cancer Res 66:9665–9672PubMedCrossRefGoogle Scholar
  19. 19.
    Lee J, Banu SK, Subbarao T, Starzinski-Powitz A, Arosh JA (2011) Selective inhibition of prostaglandin E2 receptors EP2 and EP4 inhibits invasion of human immortalized endometriotic epithelial and stromal cells through suppression of metalloproteinases. Mol Cell Endocrinol 332:306–313PubMedCrossRefGoogle Scholar
  20. 20.
    Marumiya S (2003) Prostanoids in immunity: roles revealed by mice deficient in their receptors. Life Sci 74:391–395CrossRefGoogle Scholar
  21. 21.
    Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513PubMedCrossRefGoogle Scholar
  22. 22.
    Holt D, Ma X, Kundu N, Fulton A (2011) Prostaglandin E2 (PGE2) suppresses natural killer cell function primarily through the PGE2 receptor EP4. Cancer Immunol Immunother Google Scholar
  23. 23.
    Rao R, Redha R, Macias-Perez I, Su Y, Hao C, Zent R et al (2007) Prostaglandin E2-EP4 receptor promotes endothelial cell migration via ERK activation and angiogenesis in vivo. J Biol Chem 282:16959–16968PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Xinrong Ma
    • 1
  • Namita Kundu
    • 1
    • 2
  • Peter D. Collin
    • 3
  • Olga Goloubeva
    • 1
    • 4
  • Amy M. Fulton
    • 1
    • 2
    • 5
  1. 1.University of Maryland Greenebaum Cancer CenterBaltimoreUSA
  2. 2.Department of PathologyUniversity of MarylandBaltimoreUSA
  3. 3.Coastside Bio ResourcesStoningtonUSA
  4. 4.Department of Epidemiology and Preventive MedicineBaltimoreUSA
  5. 5.Baltimore VA Medical CenterBaltimoreUSA

Personalised recommendations