Breast Cancer Research and Treatment

, Volume 130, Issue 3, pp 965–974 | Cite as

Childhood factors associated with mammographic density in adult women

  • Virginia LopeEmail author
  • Beatriz Pérez-Gómez
  • María Pilar Moreno
  • Carmen Vidal
  • Dolores Salas-Trejo
  • Nieves Ascunce
  • Isabel González Román
  • Carmen Sánchez-Contador
  • María Carmen Santamariña
  • Jose Antonio Vázquez Carrete
  • Francisca Collado-García
  • Carmen Pedraz-Pingarrón
  • María Ederra
  • Francisco Ruiz-Perales
  • Mercé Peris
  • Soledad Abad
  • Anna Cabanes
  • Marina Pollán
  • DDM Spain


Growth and development factors could contribute to the development of breast cancer associated with an increase in mammographic density. This study examines the influence of certain childhood-related, socio-demographic and anthropometric variables on mammographic density in adult woman. The study covered 3574 women aged 45–68 years, participating in breast cancer-screening programmes in seven Spanish cities. Based on a craniocaudal mammogram, blind, anonymous measurement of mammographic density was made by a single radiologist, using Boyd’s semiquantitative scale. Data associated with the early stages of life were obtained from a direct survey. Ordinal logistic regression and generalised linear models were employed to estimate the association between mammographic density and the variables covered by the questionnaire. Screening programme was introduced as a random effects term. Age, number of children, body mass index (BMI) and other childhood-related variables were used as adjustment variables, and stratified by menopausal status. A total of 811 women (23%) presented mammographic density of over 50%, and 5% of densities exceeded 75%. Our results show a greater prevalence of high mammographic density in women with low prepubertal weight (OR: 1.18; 95% CI: 1.02–1.36); marked prepubertal height (OR: 1.25; 95% CI: 0.97–1.60) and advanced age of their mothers at their birth (>39 years: OR: 1.28; 95% CI: 1.03–1.60); and a lower prevalence of high mammographic density in women with higher prepubertal weight, low birth weight and earlier menarche. The influence of these early-life factors may be explained by greater exposure to hormones and growth factors during the development of the breast gland, when breast tissue would be particularly susceptible to proliferative and carcinogenic stimulus.


Mammographic density Childhood body size Perinatal factors Breast density Breast cancer Ordinal logistic models 



The authors wish to thank the participants in the DDM-Spain study for their contribution to breast cancer research. This study was supported by the Research Grant FIS PI060386 from Spain’s Health Research Fund (Fondo de Investigación Sanitaria); the EPY 1306/06 Collaboration Agreement between Astra-Zeneca and the Carlos III Institute of Health (Instituto de Salud Carlos III); and a grant from the Spanish Federation of Breast Cancer patients (FECMA EPY 1170-10).

Conflict of interest

The authors declared no conflict of interest.


  1. 1.
    Boyd NF, Martin LJ, Bronskill M, Yaffe MJ, Duric N, Minkin S (2010) Breast tissue composition and susceptibility to breast cancer. J Natl Cancer Inst 102:1224–1237PubMedCrossRefGoogle Scholar
  2. 2.
    Johns PC, Yaffe MJ (1987) X-ray characterisation of normal and neoplastic breast tissues. Phys Med Biol 32:675–695PubMedCrossRefGoogle Scholar
  3. 3.
    Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, Jong RA, Hislop G, Chiarelli A, Minkin S et al (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356:227–236PubMedCrossRefGoogle Scholar
  4. 4.
    McCormack VA, dos SS I (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15:1159–1169PubMedCrossRefGoogle Scholar
  5. 5.
    Boyd NF, Martin LJ, Rommens JM, Paterson AD, Minkin S, Yaffe MJ, Stone J, Hopper JL (2009) Mammographic density: a heritable risk factor for breast cancer. Methods Mol Biol 472:343–360PubMedCrossRefGoogle Scholar
  6. 6.
    Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ, Paterson AD (2005) Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol 6:798–808PubMedCrossRefGoogle Scholar
  7. 7.
    Pike MC, Krailo MD, Henderson BE, Casagrande JT, Hoel DG (1983) ‘Hormonal’ risk factors, ‘breast tissue age’ and the age-incidence of breast cancer. Nature 303:767–770PubMedCrossRefGoogle Scholar
  8. 8.
    Martin LJ, Boyd NF (2008) Mammographic density. Potential mechanisms of breast cancer risk associated with mammographic density: hypotheses based on epidemiological evidence. Breast Cancer Res 10:201PubMedCrossRefGoogle Scholar
  9. 9.
    Colditz GA, Frazier AL (1995) Models of breast cancer show that risk is set by events of early life: prevention efforts must shift focus. Cancer Epidemiol Biomarkers Prev 4:567–571PubMedGoogle Scholar
  10. 10.
    Hiatt RA, Haslam SZ, Osuch J (2009) The breast cancer and the environment research centers: transdisciplinary research on the role of the environment in breast cancer etiology. Environ Health Perspect 117:1814–1822PubMedGoogle Scholar
  11. 11.
    Park SK, Kang D, McGlynn KA, Garcia-Closas M, Kim Y, Yoo KY, Brinton LA (2008) Intrauterine environments and breast cancer risk: meta-analysis and systematic review. Breast Cancer Res 10:R8PubMedCrossRefGoogle Scholar
  12. 12.
    Xue F, Michels KB (2007) Intrauterine factors and risk of breast cancer: a systematic review and meta-analysis of current evidence. Lancet Oncol 8:1088–1100PubMedCrossRefGoogle Scholar
  13. 13.
    Garrido-Estepa M, Ruiz-Perales F, Miranda J, Ascunce N, Gonzalez-Roman I, Sanchez-Contador C, Santamarina C, Moreo P, Vidal C, Peris M et al (2010) Evaluation of mammographic density patterns: reproducibility and concordance among scales. BMC Cancer 10:485PubMedGoogle Scholar
  14. 14.
    Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, CambridgeGoogle Scholar
  15. 15.
    Rabe-Hesketh S, Skrondal A, Pickles A (2010) Generalized Linear latent and Mixed Models.
  16. 16.
    Trichopoulos D (1990) Hypothesis: does breast cancer originate in utero? Lancet 335:939–940PubMedCrossRefGoogle Scholar
  17. 17.
    Troisi R, Potischman N, Hoover RN (2007) Exploring the underlying hormonal mechanisms of prenatal risk factors for breast cancer: a review and commentary. Cancer Epidemiol Biomarkers Prev 16:1700–1712PubMedCrossRefGoogle Scholar
  18. 18.
    Cerhan JR, Sellers TA, Janney CA, Pankratz VS, Brandt KR, Vachon CM (2005) Prenatal and perinatal correlates of adult mammographic breast density. Cancer Epidemiol Biomarkers Prev 14:1502–1508PubMedCrossRefGoogle Scholar
  19. 19.
    Tamimi RM, Eriksson L, Lagiou P, Czene K, Ekbom A, Hsieh CC, Adami HO, Trichopoulos D, Hall P (2010) Birth weight and mammographic density among postmenopausal women in Sweden. Int J Cancer 126:985–991PubMedGoogle Scholar
  20. 20.
    Jeffreys M, Warren R, Highnam R, Davey SG (2008) Breast cancer risk factors and a novel measure of volumetric breast density: cross-sectional study. Br J Cancer 98:210–216PubMedCrossRefGoogle Scholar
  21. 21.
    El Bastawissi AY, Aiello EJ, Buist DS, Taplin SH (2005) Previous pregnancy outcome and breast density (United States). Cancer Causes Control 16:407–417PubMedCrossRefGoogle Scholar
  22. 22.
    McCormack VA, dos SS I, De Stavola BL, Perry N, Vinnicombe S, Swerdlow AJ, Hardy R, Kuh D (2003) Life-course body size and perimenopausal mammographic parenchymal patterns in the MRC 1946 British birth cohort. Br J Cancer 89:852–859PubMedCrossRefGoogle Scholar
  23. 23.
    Michels KB, Xue F (2006) Role of birthweight in the etiology of breast cancer. Int J Cancer 119:2007–2025PubMedCrossRefGoogle Scholar
  24. 24.
    Ruder EH, Dorgan JF, Kranz S, Kris-Etherton PM, Hartman TJ (2008) Examining breast cancer growth and lifestyle risk factors: early life, childhood, and adolescence. Clin Breast Cancer 8:334–342PubMedCrossRefGoogle Scholar
  25. 25.
    Kaijser M, Granath F, Jacobsen G, Cnattingius S, Ekbom A (2000) Maternal pregnancy estriol levels in relation to anamnestic and fetal anthropometric data. Epidemiology 11:315–319PubMedCrossRefGoogle Scholar
  26. 26.
    Mucci LA, Lagiou P, Tamimi RM, Hsieh CC, Adami HO, Trichopoulos D (2003) Pregnancy estriol, estradiol, progesterone and prolactin in relation to birth weight and other birth size variables (United States). Cancer Causes Control 14:311–318PubMedCrossRefGoogle Scholar
  27. 27.
    Wang HS, Chard T (1992) The role of insulin-like growth factor-I and insulin-like growth factor-binding protein-1 in the control of human fetal growth. J Endocrinol 132:11–19PubMedCrossRefGoogle Scholar
  28. 28.
    Samimi G, Colditz GA, Baer HJ, Tamimi RM (2008) Measures of energy balance and mammographic density in the Nurses’ Health Study. Breast Cancer Res Treat 109:113–122PubMedCrossRefGoogle Scholar
  29. 29.
    Sellers TA, Vachon CM, Pankratz VS, Janney CA, Fredericksen Z, Brandt KR, Huang Y, Couch FJ, Kushi LH, Cerhan JR (2007) Association of childhood and adolescent anthropometric factors, physical activity, and diet with adult mammographic breast density. Am J Epidemiol 166:456–464PubMedCrossRefGoogle Scholar
  30. 30.
    Okasha M, McCarron P, Gunnell D, Smith GD (2003) Exposures in childhood, adolescence and early adulthood and breast cancer risk: a systematic review of the literature. Breast Cancer Res Treat 78:223–276PubMedCrossRefGoogle Scholar
  31. 31.
    van den Brandt PA, Spiegelman D, Yaun SS, Adami HO, Beeson L, Folsom AR, Fraser G, Goldbohm RA, Graham S, Kushi L et al (2000) Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am J Epidemiol 152:514–527PubMedCrossRefGoogle Scholar
  32. 32.
    Ahlgren M, Melbye M, Wohlfahrt J, Sorensen TI (2004) Growth patterns and the risk of breast cancer in women. N Engl J Med 351:1619–1626PubMedCrossRefGoogle Scholar
  33. 33.
    Boyd N, Martin L, Chavez S, Gunasekara A, Salleh A, Melnichouk O, Yaffe M, Friedenreich C, Minkin S, Bronskill M (2009) Breast-tissue composition and other risk factors for breast cancer in young women: a cross-sectional study. Lancet Oncol 10:569–580PubMedCrossRefGoogle Scholar
  34. 34.
    Heng D, Gao F, Jong R, Fishell E, Yaffe M, Martin L, Li T, Stone J, Sun L, Hopper J et al (2004) Risk factors for breast cancer associated with mammographic features in Singaporean chinese women. Cancer Epidemiol Biomarkers Prev 13:1751–1758PubMedGoogle Scholar
  35. 35.
    Kelemen LE, Pankratz VS, Sellers TA, Brandt KR, Wang A, Janney C, Fredericksen ZS, Cerhan JR, Vachon CM (2008) Age-specific trends in mammographic density: the Minnesota Breast Cancer Family Study. Am J Epidemiol 167:1027–1036PubMedCrossRefGoogle Scholar
  36. 36.
    McCormack VA, Perry NM, Vinnicombe SJ, dos SS I (2010) Changes and tracking of mammographic density in relation to Pike’s model of breast tissue aging: a UK longitudinal study. Int J Cancer 127:452–461PubMedCrossRefGoogle Scholar
  37. 37.
    Butler LM, Gold EB, Greendale GA, Crandall CJ, Modugno F, Oestreicher N, Quesenberry CP Jr, Habel LA (2008) Menstrual and reproductive factors in relation to mammographic density: the Study of Women’s Health Across the Nation (SWAN). Breast Cancer Res Treat 112:165–174PubMedCrossRefGoogle Scholar
  38. 38.
    Dite GS, Gurrin LC, Byrnes GB, Stone J, Gunasekara A, McCredie MR, English DR, Giles GG, Cawson J, Hegele RA et al (2008) Predictors of mammographic density: insights gained from a novel regression analysis of a twin study. Cancer Epidemiol Biomarkers Prev 17:3474–3481PubMedCrossRefGoogle Scholar
  39. 39.
    El Bastawissi AY, White E, Mandelson MT, Taplin SH (2000) Reproductive and hormonal factors associated with mammographic breast density by age (United States). Cancer Causes Control 11:955–963PubMedCrossRefGoogle Scholar
  40. 40.
    Titus-Ernstoff L, Tosteson AN, Kasales C, Weiss J, Goodrich M, Hatch EE, Carney PA (2006) Breast cancer risk factors in relation to breast density (United States). Cancer Causes Control 17:1281–1290PubMedCrossRefGoogle Scholar
  41. 41.
    Vachon CM, Kuni CC, Anderson K, Anderson VE, Sellers TA (2000) Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control 11:653–662PubMedCrossRefGoogle Scholar
  42. 42.
    Kelsey JL, Bernstein L (1996) Epidemiology and prevention of breast cancer. Annu Rev Public Health 17:47–67PubMedCrossRefGoogle Scholar
  43. 43.
    Titus-Ernstoff L, Longnecker MP, Newcomb PA, Dain B, Greenberg ER, Mittendorf R, Stampfer M, Willett W (1998) Menstrual factors in relation to breast cancer risk. Cancer Epidemiol Biomarkers Prev 7:783–789PubMedGoogle Scholar
  44. 44.
    Hsieh CC, Trichopoulos D, Katsouyanni K, Yuasa S (1990) Age at menarche, age at menopause, height and obesity as risk factors for breast cancer: associations and interactions in an international case-control study. Int J Cancer 46:796–800PubMedCrossRefGoogle Scholar
  45. 45.
    Adair LS, Gordon-Larsen P (2001) Maturational timing and overweight prevalence in US adolescent girls. Am J Public Health 91:642–644PubMedCrossRefGoogle Scholar
  46. 46.
    Ahmed ML, Ong KK, Dunger DB (2009) Childhood obesity and the timing of puberty. Trends Endocrinol Metab 20:237–242PubMedCrossRefGoogle Scholar
  47. 47.
    Bau AM, Ernert A, Schenk L, Wiegand S, Martus P, Gruters A, Krude H (2009) Is there a further acceleration in the age at onset of menarche? A cross-sectional study in 1840 school children focusing on age and bodyweight at the onset of menarche. Eur J Endocrinol 160:107–113PubMedCrossRefGoogle Scholar
  48. 48.
    Jasik CB, Lustig RH (2008) Adolescent obesity and puberty: the “perfect storm”. Ann N Y Acad Sci 1135:265–279PubMedCrossRefGoogle Scholar
  49. 49.
    dos SS I, De Stavola BL, Mann V, Kuh D, Hardy R, Wadsworth ME (2002) Prenatal factors, childhood growth trajectories and age at menarche. Int J Epidemiol 31:405–412CrossRefGoogle Scholar
  50. 50.
    Martinez J, Araujo C, Horta BL, Gigante DP (2010) Growth patterns in early childhood and the onset of menarche before age twelve. Rev Saude Publica 44:249–260PubMedCrossRefGoogle Scholar
  51. 51.
    Opdahl S, Nilsen TI, Romundstad PR, Vanky E, Carlsen SM, Vatten LJ (2008) Association of size at birth with adolescent hormone levels, body size and age at menarche: relevance for breast cancer risk. Br J Cancer 99:201–206PubMedCrossRefGoogle Scholar
  52. 52.
    Silva IS, De Stavola B, McCormack V (2008) Birth size and breast cancer risk: re-analysis of individual participant data from 32 studies. PLoS Med 5:e193CrossRefGoogle Scholar
  53. 53.
    Kleinberg DL, Wood TL, Furth PA, Lee AV (2009) Growth hormone and insulin-like growth factor-I in the transition from normal mammary development to preneoplastic mammary lesions. Endocr Rev 30:51–74PubMedCrossRefGoogle Scholar
  54. 54.
    Trichopoulos D, Lagiou P, Adami HO (2005) Towards an integrated model for breast cancer etiology: the crucial role of the number of mammary tissue-specific stem cells. Breast Cancer Res 7:13–17PubMedCrossRefGoogle Scholar
  55. 55.
    Key TJ, Appleby PN, Reeves GK, Roddam AW (2010) Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol 11:530–542PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Virginia Lope
    • 1
    • 2
    Email author
  • Beatriz Pérez-Gómez
    • 1
    • 2
  • María Pilar Moreno
    • 3
  • Carmen Vidal
    • 4
  • Dolores Salas-Trejo
    • 5
    • 6
  • Nieves Ascunce
    • 2
    • 7
  • Isabel González Román
    • 8
  • Carmen Sánchez-Contador
    • 9
  • María Carmen Santamariña
    • 10
  • Jose Antonio Vázquez Carrete
    • 10
  • Francisca Collado-García
    • 9
  • Carmen Pedraz-Pingarrón
    • 11
  • María Ederra
    • 2
    • 7
  • Francisco Ruiz-Perales
    • 5
    • 6
  • Mercé Peris
    • 4
  • Soledad Abad
    • 3
  • Anna Cabanes
    • 1
    • 2
  • Marina Pollán
    • 1
    • 2
  • DDM Spain
  1. 1.Cancer and Environmental Epidemiology Unit, National Center for EpidemiologyCarlos III Institute of HealthMadridSpain
  2. 2.Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP)MadridSpain
  3. 3.Aragon Breast Cancer Screening Programme. Health Service of AragonZaragozaSpain
  4. 4.Cancer Prevention and Control Unit. Catalan Institute of Oncology (ICO)BarcelonaSpain
  5. 5.Valencia Breast Cancer Screening ProgrammeGeneral Directorate Public HealthValenciaSpain
  6. 6.Centro Superior de Investigación en Salud Pública(CSISP)ValenciaSpain
  7. 7.Navarra Breast Cancer Screening ProgrammePublic Health InstitutePamplonaSpain
  8. 8.Health and Social Welfare DepartmentSection for Health Promotion and ProtectionCastile-LeónSpain
  9. 9.Balearic Islands Breast Cancer Screening Programme. Health Promotion for Women and Childhood. General Directorate Public Health and ParticipationRegional Authority of Health and Consumer AffairsBalearic IslandsSpain
  10. 10.Galicia Breast Cancer Screening ProgrammeRegional Authority of Health, Galicia Regional GovernmentGaliciaSpain
  11. 11.Castile-León Breast Cancer Screening ProgrammeGeneral Directorate Public Health SACYLCastile-LeónSpain

Personalised recommendations