Advertisement

Breast Cancer Research and Treatment

, Volume 130, Issue 3, pp 939–951 | Cite as

Common genetic polymorphisms of microRNA biogenesis pathway genes and risk of breast cancer: a case–control study in Korea

  • Hyuna Sung
  • Kyoung-Mu Lee
  • Ji-Yeob Choi
  • Sohee Han
  • Ji-Young Lee
  • Lian Li
  • Sue K. Park
  • Keun-Young Yoo
  • Dong-Young Noh
  • Sei-Hyun Ahn
  • Daehee KangEmail author
Epidemiology

Abstract

Recent compelling evidence indicates that mutation, aberrant expression, and dysregulation of microRNA (miRNA) biogenesis are implicated in cancer development and progression. Based on the important role of miRNA biogenesis pathway in carcinogenesis, we hypothesized that genetic variations in this pathway genes may play a role as susceptibility factors for breast cancer. To test this hypothesis, we investigated the associations between 41 single nucleotide polymorphisms (SNPs) in 14 genes involved in miRNA biogenesis pathway and breast cancer risk in a case–control study of 559 Korean breast cancer cases and 567 controls frequency-matched by age. In all women, 3 SNPs (AGO1 rs595055, AGO2 rs3864659, and p68 rs1991401) were significantly associated with breast cancer risk. In stratified analysis by menopausal status, altered risk associations were observed for 7 SNPs in postmenopausal breast cancer. When subjects were grouped by the number of high-risk genotypes, we found a progressive increase in gene-dosage effect (P trend = 9.46E−7). The protective effects of AGO2 rs3864659 and HIWI rs11060845 were more pronounced in progesterone receptor-positive (PR+) cancer than in progesterone receptor-negative (PR−) cancer (odds ratio (OR), 0.50; 95% confidence interval (CI), 0.30–0.84 vs. OR, 0.94; 95% CI, 0.60–1.84; P heterogeneity = 0.04 and OR, 0.57; 95% CI, 0.37–0.88 vs. OR, 0.97; 95% CI, 0.65–1.44; P heterogeneity = 0.02, respectively), and the DROSHA rs644236 had stronger association with estrogen receptor-negative (ER−) cancer than for estrogen receptor-positive (ER+) cancer (OR, 1.39; 95% CI, 1.08–1.78 vs. OR, 1.05; 95% CI, 0.85–1.29; P heterogeneity = 0.04). Our results suggest that genetic variants in miRNA biogenesis pathway genes may be associated with breast cancer risk, and the modifiable effects might be different according to the menopausal status and hormone receptor status.

Keywords

MicroRNA biogenesis pathway Breast cancer Genetic susceptibility Single nucleotide polymorphism Hormone receptor status 

Abbreviations

BMI

Body mass index

CI

Confidence interval

ER+

Estrogen receptor-positive

ER−

Estrogen receptor-negative

GWAS

Genome-wide association study

HWE

Hardy–Weinberg equilibrium

LD

Linkage disequilibrium

MAF

Minor allele frequency

miRNA

MicroRNA

OR

Odds ratio

PR+

Progesterone receptor-positive

PR−

Progesterone receptor-negative

SNP

Single nucleotide polymorphism

Notes

Acknowledgments

This research was supported by Basic Research Laboratory (BRL) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2010-0001200).

Conflict of interest

None.

Supplementary material

10549_2011_1656_MOESM1_ESM.doc (54 kb)
Supplementary Table 1 The distributions of selected haplotypes in miRNA biogenesis pathway genes and breast cancer risks in postmenopausal women. (DOC 54 kb)
10549_2011_1656_MOESM2_ESM.docx (28 kb)
Supplementary Table for Editor Tagging efficiency: the proportion of common variants tagged by the tagSNPs in selected genes (DOCX 27 kb)

References

  1. 1.
    Coughlin SS, Ekwueme DU (2009) Breast cancer as a global health concern. Cancer Epidemiol 33(5):315–318PubMedCrossRefGoogle Scholar
  2. 2.
    Pharoah PD, Antoniou AC, Easton DF, Ponder BA (2008) Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med 358(26):2796–2803PubMedCrossRefGoogle Scholar
  3. 3.
    Garcia-Closas M, Chanock S (2008) Genetic susceptibility loci for breast cancer by estrogen receptor status. Clin Cancer Res 14(24):8000–8009PubMedCrossRefGoogle Scholar
  4. 4.
    Althuis MD, Fergenbaum JH, Garcia-Closas M, Brinton LA, Madigan MP, Sherman ME (2004) Etiology of hormone receptor-defined breast cancer: a systematic review of the literature. Cancer Epidemiol Biomarkers Prev 13(10):1558–1568PubMedGoogle Scholar
  5. 5.
    Reeves GK, Travis RC, Green J, Bull D, Tipper S, Baker K, Beral V, Peto R, Bell J, Zelenika D, Lathrop M (2010) Incidence of breast cancer and its subtypes in relation to individual and multiple low-penetrance genetic susceptibility loci. JAMA 304(4):426–434PubMedCrossRefGoogle Scholar
  6. 6.
    Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114PubMedCrossRefGoogle Scholar
  7. 7.
    Spizzo R, Nicoloso MS, Croce CM, Calin GA (2009) SnapShot: microRNAs in cancer. Cell 137(3):586–586.e1PubMedCrossRefGoogle Scholar
  8. 8.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99(24):15524–15529PubMedCrossRefGoogle Scholar
  9. 9.
    Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866PubMedCrossRefGoogle Scholar
  10. 10.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838PubMedCrossRefGoogle Scholar
  11. 11.
    Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39(5):673–677PubMedCrossRefGoogle Scholar
  12. 12.
    Ryan BM, Robles AI, Harris CC (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10(6):389–402PubMedCrossRefGoogle Scholar
  13. 13.
    Yang H, Dinney CP, Ye Y, Zhu Y, Grossman HB, Wu X (2008) Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer. Cancer Res 68(7):2530–2537PubMedCrossRefGoogle Scholar
  14. 14.
    Ye Y, Wang KK, Gu J, Yang H, Lin J, Ajani JA, Wu X (2008) Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res (Phila) 1(6):460–469CrossRefGoogle Scholar
  15. 15.
    Horikawa Y, Wood CG, Yang H, Zhao H, Ye Y, Gu J, Lin J, Habuchi T, Wu X (2008) Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma. Clin Cancer Res 14(23):7956–7962PubMedCrossRefGoogle Scholar
  16. 16.
    Sun JL, Zheng SL, Wiklund F, Isaacs SD, Li G, Wiley KE, Kim ST, Zhu Y, Zhang Z, Hsu FC, Turner AR, Stattin P, Liu WN, Kim JW, Duggan D, Carpten J, Isaacs W, Gronberg H, Xu JF, Chang BL (2009) Sequence variants at 22q13 are associated with prostate cancer risk. Cancer Res 69(1):10–15PubMedCrossRefGoogle Scholar
  17. 17.
    Clague J, Lippman SM, Yang H, Hildebrandt MA, Ye Y, Lee JJ, Wu X (2010) Genetic variation in MicroRNA genes and risk of oral premalignant lesions. Mol Carcinog 49(2):183–189PubMedGoogle Scholar
  18. 18.
    Lee HC, Kim JG, Chae YS, Sohn SK, Kang BW, Moon JH, Jeon SW, Lee MH, Lim KH, Park JY, Choi GS, Jun SH (2010) Prognostic impact of microRNA-related gene polymorphisms on survival of patients with colorectal cancer. J Cancer Res Clin Oncol 136:1073–1078PubMedCrossRefGoogle Scholar
  19. 19.
    Lin J, Horikawa Y, Tamboli P, Clague J, Wood CG, Wu X (2010) Genetic variations in microRNA-related genes are associated with survival and recurrence in patients with renal cell carcinoma. Carcinogenesis 31(10):1805–1812PubMedCrossRefGoogle Scholar
  20. 20.
    Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139PubMedCrossRefGoogle Scholar
  21. 21.
    Fuller-Pace FV, Ali S (2008) The DEAD box RNA helicases p68 (Ddx5) and p72 (Ddx17): novel transcriptional co-regulators. Biochem Soc Trans 36(Pt 4):609–612PubMedCrossRefGoogle Scholar
  22. 22.
    Macias S, Michlewski G, Caceres JF (2009) Hormonal regulation of microRNA biogenesis. Mol Cell 36(2):172–173PubMedCrossRefGoogle Scholar
  23. 23.
    Lee SA, Lee KM, Lee SJ, Yoo KY, Park SK, Noh DY, Ahn SH, Kang D (2010) Antioxidant vitamins intake, ataxia telangiectasia mutated (ATM) genetic polymorphisms, and breast cancer risk. Nutr Cancer 62(8):1087–1094PubMedCrossRefGoogle Scholar
  24. 24.
    Lee JY, Park AK, Lee KM, Park SK, Han S, Han W, Noh DY, Yoo KY, Kim H, Chanock SJ, Rothman N, Kang D (2009) Candidate gene approach evaluates association between innate immunity genes and breast cancer risk in Korean women. Carcinogenesis 30(9):1528–1531PubMedCrossRefGoogle Scholar
  25. 25.
    Xu Z, Taylor JA (2009) SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res 37 (Web Server issue):W600–W605Google Scholar
  26. 26.
    Tyrer J, Pharoah PD, Easton DF (2006) The admixture maximum likelihood test: a novel experiment-wise test of association between disease and multiple SNPs. Genet Epidemiol 30(7):636–643PubMedCrossRefGoogle Scholar
  27. 27.
    Koesters R, Adams V, Betts D, Moos R, Schmid M, Siermann A, Hassam S, Weitz S, Lichter P, Heitz PU, von Knebel Doeberitz M, Briner J (1999) Human eukaryotic initiation factor EIF2C1 gene: cDNA sequence, genomic organization, localization to chromosomal bands 1p34-p35, and expression. Genomics 61(2):210–218PubMedCrossRefGoogle Scholar
  28. 28.
    Kim JS, Choi YY, Jin G, Kang HG, Choi JE, Jeon HS, Lee WK, Kim DS, Kim CH, Kim YJ, Son JW, Jung TH, Park JY (2010) Association of a common AGO1 variant with lung cancer risk: a two-stage case-control study. Mol Carcinog 49(10):913–921PubMedCrossRefGoogle Scholar
  29. 29.
    Zhou Y, Chen L, Barlogie B, Stephens O, Wu X, Williams DR, Cartron MA, van Rhee F, Nair B, Waheed S, Pineda-Roman M, Alsayed Y, Anaissie E, Shaughnessy JD Jr (2010) High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proc Natl Acad Sci USA 107(17):7904–7909PubMedCrossRefGoogle Scholar
  30. 30.
    Kim MS, Oh JE, Kim YR, Park SW, Kang MR, Kim SS, Ahn CH, Yoo NJ, Lee SH (2010) Somatic mutations and losses of expression of microRNA regulation-related genes AGO2 and TNRC6A in gastric and colorectal cancers. J Pathol 221(2):139–146PubMedCrossRefGoogle Scholar
  31. 31.
    Adams BD, Claffey KP, White BA (2009) Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells. Endocrinology 150(1):14–23PubMedCrossRefGoogle Scholar
  32. 32.
    Wortham NC, Ahamed E, Nicol SM, Thomas RS, Periyasamy M, Jiang J, Ochocka AM, Shousha S, Huson L, Bray SE, Coombes RC, Ali S, Fuller-Pace FV (2009) The DEAD-box protein p72 regulates ERalpha-/oestrogen-dependent transcription and cell growth, and is associated with improved survival in ERalpha-positive breast cancer. Oncogene 28(46):4053–4064PubMedCrossRefGoogle Scholar
  33. 33.
    Huang H, Shiffman ML, Cheung RC, Layden TJ, Friedman S, Abar OT, Yee L, Chokkalingam AP, Schrodi SJ, Chan J, Catanese JJ, Leong DU, Ross D, Hu X, Monto A, McAllister LB, Broder S, White T, Sninsky JJ, Wright TL (2006) Identification of two gene variants associated with risk of advanced fibrosis in patients with chronic hepatitis C. Gastroenterology 130(6):1679–1687PubMedCrossRefGoogle Scholar
  34. 34.
    Guo J, Hong F, Loke J, Yea S, Lim CL, Lee U, Mann DA, Walsh MJ, Sninsky JJ, Friedman SL (2010) A DDX5 S480A polymorphism is associated with increased transcription of fibrogenic genes in hepatic stellate cells. J Biol Chem 285(8):5428–5437PubMedCrossRefGoogle Scholar
  35. 35.
    Wan D, He M, Wang J, Qiu X, Zhou W, Luo Z, Chen J, Gu J (2004) Two variants of the human hepatocellular carcinoma-associated HCAP1 gene and their effect on the growth of the human liver cancer cell line Hep3B. Genes Chromosomes Cancer 39(1):48–58PubMedCrossRefGoogle Scholar
  36. 36.
    Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, Barbosa-Morais NL, Teschendorff AE, Green AR, Ellis IO, Tavare S, Caldas C, Miska EA (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8(10):R214PubMedCrossRefGoogle Scholar
  37. 37.
    Lowery AJ, Miller N, Devaney A, McNeill RE, Davoren PA, Lemetre C, Benes V, Schmidt S, Blake J, Ball G, Kerin MJ (2009) MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res 11(3):R27PubMedCrossRefGoogle Scholar
  38. 38.
    Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070PubMedCrossRefGoogle Scholar
  39. 39.
    Faggad A, Budczies J, Tchernitsa O, Darb-Esfahani S, Sehouli J, Muller BM, Wirtz R, Chekerov R, Weichert W, Sinn B, Mucha C, Elwali NE, Schafer R, Dietel M, Denkert C (2010) Prognostic significance of Dicer expression in ovarian cancer-link to global microRNA changes and oestrogen receptor expression. J Pathol 220(3):382–391PubMedGoogle Scholar
  40. 40.
    Muralidhar B, Goldstein LD, Ng G, Winder DM, Palmer RD, Gooding EL, Barbosa-Morais NL, Mukherjee G, Thorne NP, Roberts I, Pett MR, Coleman N (2007) Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels. J Pathol 212(4):368–377PubMedCrossRefGoogle Scholar
  41. 41.
    Maillot G, Lacroix-Triki M, Pierredon S, Gratadou L, Schmidt S, Benes V, Roche H, Dalenc F, Auboeuf D, Millevoi S, Vagner S (2009) Widespread estrogen-dependent repression of micrornas involved in breast tumor cell growth. Cancer Res 69(21):8332–8340PubMedCrossRefGoogle Scholar
  42. 42.
    Chu Y, Yue X, Younger ST, Janowski BA, Corey DR (2010) Involvement of argonaute proteins in gene silencing and activation by RNAs complementary to a non-coding transcript at the progesterone receptor promoter. Nucleic Acids Res 38:7736–7748PubMedCrossRefGoogle Scholar
  43. 43.
    Sugito N, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A, Kurehara H, Ando T, Mori R, Takashima N, Ogawa R, Fujii Y (2006) RNASEN regulates cell proliferation and affects survival in esophageal cancer patients. Clin Cancer Res 12(24):7322–7328PubMedCrossRefGoogle Scholar
  44. 44.
    Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R, Urbauer D, Pennacchio LA, Cheng JF, Nick AM, Deavers MT, Mourad-Zeidan A, Wang H, Mueller P, Lenburg ME, Gray JW, Mok S, Birrer MJ, Lopez-Berestein G, Coleman RL, Bar-Eli M, Sood AK (2008) Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 359(25):2641–2650PubMedCrossRefGoogle Scholar
  45. 45.
    Lin RJ, Lin YC, Chen J, Kuo HH, Chen YY, Diccianni MB, London WB, Chang CH, Yu AL (2010) microRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. Cancer Res 70(20):7841–7850PubMedCrossRefGoogle Scholar
  46. 46.
    Dedes KJ, Natrajan R, Lambros MB, Geyer FC, Lopez-Garcia MA, Savage K, Jones RL, Reis-Filho JS (2010) Down-regulation of the miRNA master regulators Drosha and Dicer is associated with specific subgroups of breast cancer. Eur J Cancer 47(1):138–150Google Scholar
  47. 47.
    Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9(1):22–32PubMedCrossRefGoogle Scholar
  48. 48.
    Liu X, Sun Y, Guo J, Ma H, Li J, Dong B, Jin G, Zhang J, Wu J, Meng L, Shou C (2006) Expression of hiwi gene in human gastric cancer was associated with proliferation of cancer cells. Int J Cancer 118(8):1922–1929PubMedCrossRefGoogle Scholar
  49. 49.
    Grochola LF, Greither T, Taubert H, Moller P, Knippschild U, Udelnow A, Henne-Bruns D, Wurl P (2008) The stem cell-associated Hiwi gene in human adenocarcinoma of the pancreas: expression and risk of tumour-related death. Br J Cancer 99(7):1083–1088PubMedCrossRefGoogle Scholar
  50. 50.
    He W, Wang Z, Wang Q, Fan Q, Shou C, Wang J, Giercksky KE, Nesland JM, Suo Z (2009) Expression of HIWI in human esophageal squamous cell carcinoma is significantly associated with poorer prognosis. BMC Cancer 9:426PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Hyuna Sung
    • 1
  • Kyoung-Mu Lee
    • 2
  • Ji-Yeob Choi
    • 1
  • Sohee Han
    • 3
  • Ji-Young Lee
    • 3
  • Lian Li
    • 4
  • Sue K. Park
    • 1
    • 3
    • 4
  • Keun-Young Yoo
    • 3
  • Dong-Young Noh
    • 4
    • 5
  • Sei-Hyun Ahn
    • 6
  • Daehee Kang
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea
  2. 2.Department of Environmental HealthKorea National Open UniversitySeoulKorea
  3. 3.Department of Preventive MedicineSeoul National University College of MedicineSeoulKorea
  4. 4.Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
  5. 5.Department of SurgerySeoul National University College of MedicineSeoulKorea
  6. 6.Department of Surgery, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea

Personalised recommendations