Breast Cancer Research and Treatment

, Volume 130, Issue 2, pp 587–597 | Cite as

Risk factors by molecular subtypes of breast cancer across a population-based study of women 56 years or younger

  • Mia M. Gaudet
  • Michael F. Press
  • Robert W. Haile
  • Charles F. Lynch
  • Sally L. Glaser
  • Joellen Schildkraut
  • Marilie D. Gammon
  • W. Douglas Thompson
  • Jonine L. Bernstein
Epidemiology

Abstract

Differences in incidence, prognosis, and treatment response suggest gene expression patterns may discern breast cancer subtypes with unique risk factor profiles; however, previous results were based predominantly on older women. In this study, we examined similar relationships in women ≤56 years, classified by immunohistochemical staining for estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2 for 890 breast cancer cases and 3,432 frequency-matched population-based controls. Odds ratios (OR) and 95% confidence intervals (CI) for tumor subtypes were calculated using multivariate polytomous regression models. A total of 455 (51.1%) tumors were considered luminal A, 72 (8.1%) luminal B, 117 (13.1%) non-luminal HER-2/neu+, and 246 (27.6%) triple negative. Triple negative tumors were associated with breast feeding duration (per 6 months: OR = 0.76, 95% CI 0.64–0.90). Among premenopausal women, increasing body size was more strongly associated with luminal B (OR = 1.73, 95% CI 1.07–2.77) and triple negative tumors (OR = 1.67, 95% CI 1.22–2.28). A history of benign breast disease was associated only with increased risk of luminal A tumors (OR = 1.89, 95% CI 1.43–2.50). A family history of breast cancer was a risk factor for luminal A tumors (OR = 1.93, 95% CI 1.38–2.70) regardless of age, and triple negative tumors with higher risks for women <45 (OR = 5.02, 95% CI 2.82–8.92; P for age interaction = 0.005). We found that little-to-no breastfeeding and high BMI were associated with increased risk of triple negative breast cancer. That some risk factors differ by molecular subtypes suggests etiologic heterogeneity in breast carcinogenesis among young women.

Keywords

Breast cancer Estrogen receptor Progesterone receptor HER2 Risk factors 

Notes

Acknowledgments

The authors would like to thank Xiaolin Liang for her data management assistance, as well as Dr. Karen Petrosyan, Armine Arakelyan, Armen Gasparyan, and Ivonne Villalobos for technical assistance and data management for the ER, PR, and HER-2/neu assays. This study was supported by the U.S. National Cancer Institute grant (NCI 5R01CA064245).

Conflict of interest

None.

Supplementary material

10549_2011_1616_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 23 kb)

References

  1. 1.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874PubMedCrossRefGoogle Scholar
  2. 2.
    Sorlie T, Wang Y, Xiao C, Johnsen H, Naume B, Samaha RR, Borresen-Dale AL (2006) Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms. BMC Genomics 7:127. doi:10.1186/1471-2164-7-127 PubMedCrossRefGoogle Scholar
  3. 3.
    Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG, Earp HS, Millikan RC (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295(21):2492–2502. doi:10.1001/jama.295.21.2492 PubMedCrossRefGoogle Scholar
  4. 4.
    Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham ML, Perou CM (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13(8):2329–2334. doi:10.1158/1078-0432.CCR-06-1109 PubMedCrossRefGoogle Scholar
  5. 5.
    Lund MJ, Trivers KF, Porter PL, Coates RJ, Leyland-Jones B, Brawley OW, Flagg EW, O’Regan RM, Gabram SG, Eley JW (2009) Race and triple negative threats to breast cancer survival: a population-based study in Atlanta, GA. Breast Cancer Res Treat 113(2):357–370. doi:10.1007/s10549-008-9926-3 PubMedCrossRefGoogle Scholar
  6. 6.
    Millikan RC, Newman B, Tse CK, Moorman PG, Conway K, Dressler LG, Smith LV, Labbok MH, Geradts J, Bensen JT, Jackson S, Nyante S, Livasy C, Carey L, Earp HS, Perou CM (2008) Epidemiology of basal-like breast cancer. Breast Cancer Res Treat 109(1):123–139. doi:10.1007/s10549-007-9632-6 PubMedCrossRefGoogle Scholar
  7. 7.
    Kwan ML, Kushi LH, Weltzien E, Maring B, Kutner SE, Fulton RS, Lee MM, Ambrosone CB, Caan BJ (2009) Epidemiology of breast cancer subtypes in two prospective cohort studies of breast cancer survivors. Breast Cancer Res 11(3):R31. doi:10.1186/bcr2261 PubMedCrossRefGoogle Scholar
  8. 8.
    Yang XR, Pfeiffer RM, Garcia-Closas M, Rimm DL, Lissowska J, Brinton LA, Peplonska B, Hewitt SM, Cartun RW, Mandich D, Sasano H, Evans DB, Sutter TR, Sherman ME (2007) Hormonal markers in breast cancer: coexpression, relationship with pathologic characteristics, and risk factor associations in a population-based study. Cancer Res 67(21):10608–10617. doi:10.1158/0008-5472.CAN-07-2142 PubMedCrossRefGoogle Scholar
  9. 9.
    Phipps AI, Malone KE, Porter PL, Daling JR, Li CI (2008) Reproductive and hormonal risk factors for postmenopausal luminal, HER-2-overexpressing, and triple-negative breast cancer. Cancer 113(7):1521–1526. doi:10.1002/cncr.23786 PubMedCrossRefGoogle Scholar
  10. 10.
    Phipps AI, Malone KE, Porter PL, Daling JR, Li CI (2008) Body size and risk of luminal, HER2-overexpressing, and triple-negative breast cancer in postmenopausal women. Cancer Epidemiol Biomarkers Prev 17(8):2078–2086. doi:10.1158/1055-9965.EPI-08-0206 PubMedCrossRefGoogle Scholar
  11. 11.
    Anderson WF, Matsuno RK, Sherman ME, Lissowska J, Gail MH, Brinton LA, Yang XR, Peplonska B, Chen BE, Rosenberg PS, Chatterjee N, Szeszenia-Dabrowska N, Bardin-Mikolajczak A, Zatonski W, Devesa SS, Garcia-Closas M (2007) Estimating age-specific breast cancer risks: a descriptive tool to identify age interactions. Cancer Causes Control 18(4):439–447. doi:10.1007/s10552-006-0092-9 PubMedCrossRefGoogle Scholar
  12. 12.
    Anderson WF, Pfeiffer RM, Dores GM, Sherman ME (2006) Comparison of age distribution patterns for different histopathologic types of breast carcinoma. Cancer Epidemiol Biomarkers Prev 15(10):1899–1905. doi:10.1158/1055-9965.EPI-06-0191 PubMedCrossRefGoogle Scholar
  13. 13.
    Wingo PA, Ory HW, Layde PM, Lee NC (1988) The evaluation of the data collection process for a multicenter, population-based, case-control design. Am J Epidemiol 128(1):206–217PubMedGoogle Scholar
  14. 14.
    Press M, Spaulding B, Groshen S, Kaminsky D, Hagerty M, Sherman L, Christensen K, Edwards DP (2002) Comparison of different antibodies for detection of progesterone receptor in breast cancer. Steroids 67(9):799–813PubMedCrossRefGoogle Scholar
  15. 15.
    Press MF, Greene GL (1984) An immunocytochemical method for demonstrating estrogen receptor in human uterus using monoclonal antibodies to human estrophilin. Lab Invest 50(4):480–486PubMedGoogle Scholar
  16. 16.
    Press MF, Hung G, Godolphin W, Slamon DJ (1994) Sensitivity of HER-2/neu antibodies in archival tissue samples: potential source of error in immunohistochemical studies of oncogene expression. Cancer Res 54(10):2771–2777PubMedGoogle Scholar
  17. 17.
    Press MF, Slamon DJ, Flom KJ, Park J, Zhou JY, Bernstein L (2002) Evaluation of HER-2/neu gene amplification and overexpression: comparison of frequently used assay methods in a molecularly characterized cohort of breast cancer specimens. J Clin Oncol 20(14):3095–3105PubMedGoogle Scholar
  18. 18.
    Dolle JM, Daling JR, White E, Brinton LA, Doody DR, Porter PL, Malone KE (2009) Risk factors for triple-negative breast cancer in women under the age of 45 years. Cancer Epidemiol Biomarkers Prev 18(4):1157–1166. doi:10.1158/1055-9965.EPI-08-1005 PubMedCrossRefGoogle Scholar
  19. 19.
    Yang XR, Sherman ME, Rimm DL, Lissowska J, Brinton LA, Peplonska B, Hewitt SM, Anderson WF, Szeszenia-Dabrowska N, Bardin-Mikolajczak A, Zatonski W, Cartun R, Mandich D, Rymkiewicz G, Ligaj M, Lukaszek S, Kordek R, Garcia-Closas M (2007) Differences in risk factors for breast cancer molecular subtypes in a population-based study. Cancer Epidemiol Biomarkers Prev 16(3):439–443. doi:10.1158/1055-9965.EPI-06-0806 PubMedCrossRefGoogle Scholar
  20. 20.
    Ma H, Wang Y, Sullivan-Halley J, Weiss L, Marchbanks PA, Spirtas R, Ursin G, Burkman RT, Simon MS, Malone KE, Strom BL, McDonald JA, Press MF, Bernstein L (2010) Use of four biomarkers to evaluate the risk of breast cancer subtypes in the women’s contraceptive and reproductive experiences study. Cancer Res 70(2):575–587. doi:10.1158/0008-5472.CAN-09-3460 PubMedCrossRefGoogle Scholar
  21. 21.
    Ma H, Luo J, Press MF, Wang Y, Bernstein L, Ursin G (2009) Is there a difference in the association between percent mammographic density and subtypes of breast cancer? Luminal A and triple-negative breast cancer. Cancer Epidemiol Biomarkers Prev 18(2):479–485. doi:10.1158/1055-9965.EPI-08-0805 PubMedCrossRefGoogle Scholar
  22. 22.
    Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 109(9):1721–1728. doi:10.1002/cncr.22618 PubMedCrossRefGoogle Scholar
  23. 23.
    Brinton LA, Sherman ME, Carreon JD, Anderson WF (2008) Recent trends in breast cancer among younger women in the United States. J Natl Cancer Inst 100(22):1643–1648. doi:10.1093/jnci/djn344 PubMedCrossRefGoogle Scholar
  24. 24.
    Penault-Llorca F, Bilous M, Dowsett M, Hanna W, Osamura RY, Ruschoff J, van de Vijver M (2009) Emerging technologies for assessing HER2 amplification. Am J Clin Pathol 132(4):539–548. doi:10.1309/AJCPV2I0HGPMGBSQ PubMedCrossRefGoogle Scholar
  25. 25.
    DiVito KA, Charette LA, Rimm DL, Camp RL (2004) Long-term preservation of antigenicity on tissue microarrays. Lab Invest 84(8):1071–1078. doi:10.1038/labinvest.3700131 PubMedCrossRefGoogle Scholar
  26. 26.
    Fergenbaum JH, Garcia-Closas M, Hewitt SM, Lissowska J, Sakoda LC, Sherman ME (2004) Loss of antigenicity in stored sections of breast cancer tissue microarrays. Cancer Epidemiol Biomarkers Prev 13(4):667–672PubMedGoogle Scholar
  27. 27.
    Sherman ME, Howatt W, Blows FM, Pharoah P, Hewitt SM, Garcia-Closas M (2011) Molecular pathology in epidemiologic studies: a primer on key considerations. Cancer Epidemiol Biomarkers Prev 19(4):966–972. doi:10.1158/1055-9965.EPI-10-0056 CrossRefGoogle Scholar
  28. 28.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752PubMedCrossRefGoogle Scholar
  29. 29.
    Collaborative Group on Hormonal Factors in Breast Cancer (1996) Breast cancer and hormonal contraceptives: collaborative reanalysis of individual data on 53 297 women with breast cancer and 100 239 women without breast cancer from 54 epidemiological studies Collaborative Group on Hormonal Factors in Breast Cancer. Lancet 347(9017):1713–1727CrossRefGoogle Scholar
  30. 30.
    Collaborative Group on Hormonal Factors in Breast Cancer (2002) Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet 360(9328):187–195CrossRefGoogle Scholar
  31. 31.
    McTiernan A, Thomas DB (1986) Evidence for a protective effect of lactation on risk of breast cancer in young women. Results from a case-control study. Am J Epidemiol 124(3):353–358PubMedGoogle Scholar
  32. 32.
    Petrakis NL, Wrensch MR, Ernster VL, Miike R, Murai J, Simberg N, Siiteri PK (1987) Influence of pregnancy and lactation on serum and breast fluid estrogen levels: implications for breast cancer risk. Int J Cancer 40(5):587–591PubMedCrossRefGoogle Scholar
  33. 33.
    Lund LR, Romer J, Thomasset N, Solberg H, Pyke C, Bissell MJ, Dano K, Werb Z (1996) Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development 122(1):181–193PubMedGoogle Scholar
  34. 34.
    Pike MC, Spicer DV, Dahmoush L, Press MF (1993) Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev 15(1):17–35PubMedGoogle Scholar
  35. 35.
    Hulka BS, Stark AT (1995) Breast cancer: cause and prevention. Lancet 346(8979):883–887PubMedCrossRefGoogle Scholar
  36. 36.
    Renehan AG, Roberts DL, Dive C (2008) Obesity and cancer: pathophysiological and biological mechanisms. Arch Physiol Biochem 114(1):71–83. doi:10.1080/13813450801954303 PubMedCrossRefGoogle Scholar
  37. 37.
    Potischman N, Swanson CA, Siiteri P, Hoover RN (1996) Reversal of relation between body mass and endogenous estrogen concentrations with menopausal status. J Natl Cancer Inst 88(11):756–758PubMedCrossRefGoogle Scholar
  38. 38.
    Key TJ, Appleby PN, Reeves GK, Roddam A, Dorgan JF, Longcope C, Stanczyk FZ, Stephenson HE Jr, Falk RT, Miller R, Schatzkin A, Allen DS, Fentiman IS, Wang DY, Dowsett M, Thomas HV, Hankinson SE, Toniolo P, Akhmedkhanov A, Koenig K, Shore RE, Zeleniuch-Jacquotte A, Berrino F, Muti P, Micheli A, Krogh V, Sieri S, Pala V, Venturelli E, Secreto G, Barrett-Connor E, Laughlin GA, Kabuto M, Akiba S, Stevens RG, Neriishi K, Land CE, Cauley JA, Kuller LH, Cummings SR, Helzlsouer KJ, Alberg AJ, Bush TL, Comstock GW, Gordon GB, Miller SR (2003) Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J Natl Cancer Inst 95(16):1218–1226PubMedCrossRefGoogle Scholar
  39. 39.
    Lahmann PH, Hoffmann K, Allen N, van Gils CH, Khaw KT, Tehard B, Berrino F, Tjonneland A, Bigaard J, Olsen A, Overvad K, Clavel-Chapelon F, Nagel G, Boeing H, Trichopoulos D, Economou G, Bellos G, Palli D, Tumino R, Panico S, Sacerdote C, Krogh V, Peeters PH, Bueno-de-Mesquita HB, Lund E, Ardanaz E, Amiano P, Pera G, Quiros JR, Martinez C, Tormo MJ, Wirfalt E, Berglund G, Hallmans G, Key TJ, Reeves G, Bingham S, Norat T, Biessy C, Kaaks R, Riboli E (2004) Body size and breast cancer risk: findings from the European prospective investigation into cancer and nutrition (EPIC). Int J Cancer 111(5):762–771PubMedCrossRefGoogle Scholar
  40. 40.
    Barb D, Williams CJ, Neuwirth AK, Mantzoros CS (2007) Adiponectin in relation to malignancies: a review of existing basic research and clinical evidence. Am J Clin Nutr 86(3):s858–s866PubMedGoogle Scholar
  41. 41.
    Cleary MP, Grossmann ME (2009) Minireview: obesity and breast cancer: the estrogen connection. Endocrinology 150(6):2537–2542. doi:10.1210/en.2009-0070 PubMedCrossRefGoogle Scholar
  42. 42.
    Stoll BA (2002) Upper abdominal obesity, insulin resistance and breast cancer risk. Int J Obes Relat Metab Disord 26(6):747–753PubMedCrossRefGoogle Scholar
  43. 43.
    Cook MG, Rohan TE (1991) Benign breast disease: the relationship between its histological features and risk factors for breast cancer. Pathology 23(4):286–290PubMedCrossRefGoogle Scholar
  44. 44.
    Foulkes WD, Stefansson IM, Chappuis PO, Begin LR, Goffin JR, Wong N, Trudel M, Akslen LA (2003) Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 95(19):1482–1485PubMedGoogle Scholar
  45. 45.
    Offit K (2006) BRCA mutation frequency and penetrance: new data, old debate. J Natl Cancer Inst 98(23):1675–1677. doi:10.1093/jnci/djj500 PubMedCrossRefGoogle Scholar
  46. 46.
    Mavaddat N, Pharoah PD, Blows F, Driver KE, Provenzano E, Thompson D, Macinnis RJ, Shah M, Search SO, Easton DF, Antoniou AC (2010) Familial relative risks for breast cancer by pathological subtype: a population-based cohort study. Breast Cancer Res 12(1):10. doi:10.1186/bcr2476 Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Mia M. Gaudet
    • 1
  • Michael F. Press
    • 2
  • Robert W. Haile
    • 3
  • Charles F. Lynch
    • 4
  • Sally L. Glaser
    • 5
    • 6
  • Joellen Schildkraut
    • 7
  • Marilie D. Gammon
    • 8
  • W. Douglas Thompson
    • 9
  • Jonine L. Bernstein
    • 10
  1. 1.Epidemiology Research ProgramAmerican Cancer SocietyAtlantaUSA
  2. 2.Department of Pathology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Department of Preventative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  4. 4.Department of EpidemiologyUniversity of IowaIowa CityUSA
  5. 5.Cancer Prevention Institute of California (Formerly the Northern California Cancer Center)FremontUSA
  6. 6.Department of Health Research and PolicyStanford UniversityStanfordUSA
  7. 7.Division of Prevention Research, Department of Community and Family MedicineThe Duke Comprehensive Cancer Center, Duke University Medical CenterDurhamUSA
  8. 8.Department of EpidemiologyUniversity of North Carolina at Chapel HillChapel HillUSA
  9. 9.Department of Applied Medical SciencesUniversity of Southern MainePortlandUSA
  10. 10.Department of Epidemiology and BiostatisticsMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations