Advertisement

Breast Cancer Research and Treatment

, Volume 132, Issue 1, pp 153–164 | Cite as

Mesenchymal stem cells from primary breast cancer tissue promote cancer proliferation and enhance mammosphere formation partially via EGF/EGFR/Akt pathway

  • Xin-long Yan
  • Chun-jiang Fu
  • Lin Chen
  • Jin-hua Qin
  • Quan Zeng
  • Hong-feng Yuan
  • Xue Nan
  • Hai-xu Chen
  • Jun-nian Zhou
  • Yan-li Lin
  • Xiao-mei Zhang
  • Cheng-ze Yu
  • Wen Yue
  • Xue-tao Pei
Preclinical Study

Abstract

Mesenchymal stem cells (MSCs) play a critical role in promoting cancer progression. However, it is not clear whether MSCs are located in breast cancer tissues and correlated with tumor proliferation. The aim of this study was to investigate the presence of MSCs in breast cancer tissues and evaluate their interactions with cancer cells. We successfully isolated and identified MSCs from primary breast cancer tissues. Breast cancer-associated MSCs (BC-MSCs) showed homogenous immunophenotype, and possessed tri-lineage differentiation potential (osteoblast, adipocyte, and chondrocyte). When co-transplanted with cancer cells in a xenograft model in vivo, BC-MSCs significantly increased the volume and weight of tumors. We observed that BC-MSCs stimulated mammosphere formation in the transwell co-culture system in vitro. This effect was significantly suppressed by the EGF receptor inhibitor. We verified that BC-MSCs could secrete EGF and activate cancer cell’s EGF receptors. Furthermore, our data showed that EGF derived from BC-MSCs could promote mammosphere formation via the PI3K/Akt signaling pathway. Our results confirmed the presence of MSC in primary breast cancer tissues, and they could provide a favorable microenvironment for tumor cell growth in vivo, partially enhance mammosphere formation via the EGF/EGFR/Akt pathway.

Keywords

Mesenchymal stem cells Breast cancer Proliferation Mammosphere EGF Xenograft PI3K/Akt 

Notes

Acknowledgments

This study was supported by National High Technology Research and Development Program of China (No:2006AA02A107), the Major State Basic Research Program of China (No:2009CB521704, 2010CB945504), and National Nature Science Foundation of China, (30873031, 30971145).

Conflict of interest

The authors confirm that there are no conflicts of interest.

Supplementary material

10549_2011_1577_MOESM1_ESM.doc (81 kb)
Supplementary material 1 (DOC 81 kb)
10549_2011_1577_MOESM2_ESM.tif (144 kb)
Supplementary material 2 (TIFF 144 kb)
10549_2011_1577_MOESM3_ESM.tif (5.8 mb)
Supplementary material 3 (TIFF 5949 kb)
10549_2011_1577_MOESM4_ESM.tif (3.2 mb)
Supplementary material 4 (TIFF 3301 kb)

References

  1. 1.
    Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1(1):46–54PubMedCrossRefGoogle Scholar
  2. 2.
    Bhowmick NA, Moses HL (2005) Tumor-stroma interactions. Curr Opin Genet Dev 15(1):97–101PubMedCrossRefGoogle Scholar
  3. 3.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70PubMedCrossRefGoogle Scholar
  4. 4.
    Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1:119–150PubMedCrossRefGoogle Scholar
  5. 5.
    Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252PubMedCrossRefGoogle Scholar
  6. 6.
    Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M, Marini F (2009) Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 4(4):e4992PubMedCrossRefGoogle Scholar
  7. 7.
    Kurtova AV, Balakrishnan K, Chen R, Ding W, Schnabl S, Quiroga MP, Sivina M, Wierda WG, Estrov Z, Keating MJ, Shehata M, Jager U, Gandhi V, Kay NE, Plunkett W, Burger JA (2009) Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance. Blood 114(20):4441–4450PubMedCrossRefGoogle Scholar
  8. 8.
    Ding W, Knox TR, Tschumper RC, Wu W, Schwager SM, Boysen JC, Jelinek DF, Kay NE (2010) Platelet-derived growth factor (PDGF)-PDGF receptor interaction activates bone marrow-derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: implications for an angiogenic switch. Blood 116(16):2984–2993PubMedCrossRefGoogle Scholar
  9. 9.
    Tabe Y, Jin L, Tsutsumi-Ishii Y, Xu Y, McQueen T, Priebe W, Mills GB, Ohsaka A, Nagaoka I, Andreeff M, Konopleva M (2007) Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemic cells by bone marrow-derived stromal cells. Cancer Res 67(2):684–694PubMedCrossRefGoogle Scholar
  10. 10.
    Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P, Delattre O (2007) Mesenchymal stem cell features of Ewing tumors. Cancer Cell 11(5):421–429PubMedCrossRefGoogle Scholar
  11. 11.
    Cao H, Xu W, Qian H, Zhu W, Yan Y, Zhou H, Zhang X, Xu X, Li J, Chen Z (2009) Mesenchymal stem cell-like cells derived from human gastric cancer tissues. Cancer Lett 274(1):61–71PubMedCrossRefGoogle Scholar
  12. 12.
    Lis R, Touboul C, Mirshahi P, Ali F, Mathew S, Nolan DJ, Maleki M, Abdalla SA, Raynaud CM, Querleu D, Al-Azwani E, Malek J, Mirshahi M, Rafii A (2010) Tumor associated mesenchymal stem cells protects ovarian cancer cells from hyperthermia through CXCL12. Int J Cancer 128(3):715–725CrossRefGoogle Scholar
  13. 13.
    Brune JC, Tormin A, Johansson MC, Rissler P, Brosjo O, Lofvenberg R, Vult von Steyern F, Mertens F, Rydholm A, Scheding S (2010) Mesenchymal stromal cells from primary osteosarcoma are non-malignant and strikingly similar to their bone marrow counterparts. Int J Cancer. doi: 10.1002/ijc.25697
  14. 14.
    Razmkhah M, Jaberipour M, Hosseini A, Safaei A, Khalatbari B, Ghaderi A (2010) Expression profile of IL-8 and growth factors in breast cancer cells and adipose-derived stem cells (ASCs) isolated from breast carcinoma. Cell Immunol 265(1):80–85PubMedCrossRefGoogle Scholar
  15. 15.
    Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563PubMedCrossRefGoogle Scholar
  16. 16.
    Joyce JA (2005) Therapeutic targeting of the tumor microenvironment. Cancer Cell 7(6):513–520PubMedCrossRefGoogle Scholar
  17. 17.
    Yan XL, Lan Y, Wang XY, He WY, Yao HY, Chen DB, Xiong JX, Gao J, Li Z, Yang G, Li XS, Liu YL, Zhang JY, Liu B, Mao N (2011) Migration of dorsal aorta mesenchymal stem cells induced by mouse embryonic circulation. Dev Dyn 240(1):65–74PubMedCrossRefGoogle Scholar
  18. 18.
    Yue W, Sun Q, Landreneau R, Wu C, Siegfried JM, Yu J, Zhang L (2009) Fibulin-5 suppresses lung cancer invasion by inhibiting matrix metalloproteinase-7 expression. Cancer Res 69(15):6339–6346PubMedCrossRefGoogle Scholar
  19. 19.
    Yue W, Dacic S, Sun Q, Landreneau R, Guo M, Zhou W, Siegfried JM, Yu J, Zhang L (2007) Frequent inactivation of RAMP2, EFEMP1 and Dutt1 in lung cancer by promoter hypermethylation. Clin Cancer Res 13:4336–4344PubMedCrossRefGoogle Scholar
  20. 20.
    Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A, Battula VL, Weil M, Andreeff M, Marini FC (2009) Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 27(10):2614–2623PubMedCrossRefGoogle Scholar
  21. 21.
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270PubMedCrossRefGoogle Scholar
  22. 22.
    Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D (2007) Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 117(4):1049–1057PubMedCrossRefGoogle Scholar
  23. 23.
    Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62(13):3603–3608PubMedGoogle Scholar
  24. 24.
    Mishra PJ, Glod JW, Banerjee D (2009) Mesenchymal stem cells: flip side of the coin. Cancer Res 69(4):1255–1258PubMedCrossRefGoogle Scholar
  25. 25.
    Lazennec G, Jorgensen C (2008) Concise review: adult multipotent stromal cells and cancer: risk or benefit? Stem Cells 26(6):1387–1394PubMedCrossRefGoogle Scholar
  26. 26.
    Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348PubMedCrossRefGoogle Scholar
  27. 27.
    Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J, Brown M, Viens P, Xerri L, Bertucci F, Stassi G, Dontu G, Birnbaum D, Wicha MS (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69(4):1302–1313PubMedCrossRefGoogle Scholar
  28. 28.
    Ishizawa K, Rasheed ZA, Karisch R, Wang Q, Kowalski J, Susky E, Pereira K, Karamboulas C, Moghal N, Rajeshkumar NV, Hidalgo M, Tsao M, Ailles L, Waddell TK, Maitra A, Neel BG, Matsui W (2010) Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 7(3):279–282PubMedCrossRefGoogle Scholar
  29. 29.
    Engelmann K, Shen H, Finn OJ (2008) MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1. Cancer Res 68(7):2419–2426PubMedCrossRefGoogle Scholar
  30. 30.
    Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman JB, Todaro M, Merz C, Rodermond H, Sprick MR, Kemper K, Richel DJ, Stassi G, Medema JP (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12(5):468–476PubMedCrossRefGoogle Scholar
  31. 31.
    Lane SW, Scadden DT, Gilliland DG (2009) The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 114(6):1150–1157PubMedCrossRefGoogle Scholar
  32. 32.
    Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82PubMedCrossRefGoogle Scholar
  33. 33.
    Klopp AH, Lacerda L, Gupta A, Debeb BG, Solley T, Li L, Spaeth E, Xu W, Zhang X, Lewis MT, Reuben JM, Krishnamurthy S, Ferrari M, Gaspar R, Buchholz TA, Cristofanilli M, Marini F, Andreeff M, Woodward WA (2010) Mesenchymal stem cells promote mammosphere formation and decrease E-cadherin in normal and malignant breast cells. PLoS One 5(8):e12180PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Xin-long Yan
    • 1
  • Chun-jiang Fu
    • 2
    • 3
  • Lin Chen
    • 1
  • Jin-hua Qin
    • 1
  • Quan Zeng
    • 1
  • Hong-feng Yuan
    • 1
  • Xue Nan
    • 1
  • Hai-xu Chen
    • 1
  • Jun-nian Zhou
    • 1
  • Yan-li Lin
    • 4
  • Xiao-mei Zhang
    • 1
  • Cheng-ze Yu
    • 2
  • Wen Yue
    • 1
  • Xue-tao Pei
    • 1
  1. 1.Stem Cell and Regenerative Medicine LabBeijing Institute of Transfusion MedicineBeijingChina
  2. 2.Department of SurgeryAffiliated Hospital of Academy of Military Medical SciencesBeijingChina
  3. 3.Beijing Fangshan Traditional Chinese Medicine HospitalBeijingChina
  4. 4.Department of Cell BiologyInstitute of BiotechnologyBeijingChina

Personalised recommendations