Advertisement

Breast Cancer Research and Treatment

, Volume 132, Issue 1, pp 61–73 | Cite as

Estrogen and insulin-like growth factor-I (IGF-I) independently down-regulate critical repressors of breast cancer growth

  • Angelo J. Casa
  • Adam S. Potter
  • Simeen Malik
  • ZaWaunyka Lazard
  • Isere Kuiatse
  • Hee-Tae Kim
  • Anna Tsimelzon
  • Chad J. Creighton
  • Susan G. Hilsenbeck
  • Powell H. Brown
  • Steffi Oesterreich
  • Adrian V. LeeEmail author
Preclinical study

Abstract

Although estrogen receptor alpha (ERα) and insulin-like growth factor (IGF) signaling are important for normal mammary development and breast cancer, cross-talk between these pathways, particularly at the level of transcription, remains poorly understood. We performed microarray analysis on MCF-7 breast cancer cells treated with estradiol (E2) or IGF-I for 3 or 24 h. IGF-I regulated mRNA of five to tenfold more genes than E2, and many genes were co-regulated by both ligands. Importantly, expression of these co-regulated genes correlated with poor prognosis of human breast cancer. Closer examination revealed enrichment of repressed transcripts. Interestingly, a number of potential tumor suppressors, for example, B-cell linker (BLNK), were down-regulated by IGF-I and E2. Analysis of three down-regulated genes showed that E2-mediated repression occurred independently of IGF-IR, and IGF-I-mediated repression occurred independently of ERα. However, repression by IGF-I or E2 required common kinases, such as PI3K and MEK, suggesting downstream convergence of the two pathways. In conclusion, E2 and IGF-I co-regulate a set of genes that affect breast cancer outcome. There is enrichment of repressed transcripts, and, for some genes, the down-regulation is independent at the receptor level. This may be important clinically, as tumors with active ERα and IGF-IR signaling may require co-targeting of both pathways.

Keywords

Estrogen IGF Cross-talk Breast cancer Microarray Transcriptional repression 

Notes

Acknowledgments

This work was supported by grants from the Department of Defense Breast Cancer Research Program W81XWH-06-1-0714 (AJC) and BC043880 (SM), and by grants from the National Institutes of Health P01CA30195 (AVL), P30CA58183 (AVL), and R01CA097213 (SO).

Supplementary material

10549_2011_1540_MOESM1_ESM.ppt (354 kb)
Supplementary material 1 (PPT 352 kb)

References

  1. 1.
    Hall JM, Couse JF, Korach KS (2001) The multifaceted mechanisms of estradiol and estrogen receptor signaling. J Biol Chem 276:36869–36872PubMedCrossRefGoogle Scholar
  2. 2.
    Casa AJ, Dearth RK, Litzenburger BC, Lee AV, Cui X (2008) The type I insulin-like growth factor receptor pathway: a key player in cancer therapeutic resistance. Front Biosci 13:3273–3287PubMedCrossRefGoogle Scholar
  3. 3.
    Sachdev D, Yee D (2001) The IGF system and breast cancer. Endocr Relat Cancer 8:197–209PubMedCrossRefGoogle Scholar
  4. 4.
    Richards RG, DiAugustine RP, Petrusz P, Clark GC, Sebastian J (1996) Estradiol stimulates tyrosine phosphorylation of the insulin-like growth factor-1 receptor and insulin receptor substrate-1 in the uterus. Proc Natl Acad Sci USA 93:12002–12007PubMedCrossRefGoogle Scholar
  5. 5.
    Richards RG, Walker MP, Sebastian J, DiAugustine RP (1998) Insulin-like growth factor-1 (IGF-1) receptor-insulin receptor substrate complexes in the uterus. Altered signaling response to estradiol in the IGF-1(m/m) mouse. J Biol Chem 273:11962–11969PubMedCrossRefGoogle Scholar
  6. 6.
    Klotz DM, Hewitt SC, Ciana P, Raviscioni M, Lindzey JK, Foley J, Maggi A, DiAugustine RP, Korach KS (2002) Requirement of estrogen receptor-alpha in insulin-like growth factor-1 (IGF-1)-induced uterine responses and in vivo evidence for IGF-1/estrogen receptor cross-talk. J Biol Chem 277:8531–8537PubMedCrossRefGoogle Scholar
  7. 7.
    Hewitt SC, Collins J, Grissom S, Deroo B, Korach KS (2005) Global uterine genomics in vivo: microarray evaluation of the estrogen receptor alpha-growth factor cross-talk mechanism. Mol Endocrinol 19:657–668PubMedCrossRefGoogle Scholar
  8. 8.
    Bocchinfuso WP, Korach KS (1997) Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J Mammary Gland Biol Neoplasia 2:323–334PubMedCrossRefGoogle Scholar
  9. 9.
    Ruan W, Kleinberg DL (1999) Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology 140:5075–5081PubMedCrossRefGoogle Scholar
  10. 10.
    Ruan W, Catanese V, Wieczorek R, Feldman M, Kleinberg DL (1995) Estradiol enhances the stimulatory effect of insulin-like growth factor-I (IGF-I) on mammary development and growth hormone-induced IGF-I messenger ribonucleic acid. Endocrinology 136:1296–1302PubMedCrossRefGoogle Scholar
  11. 11.
    Lee AV, Jackson JG, Gooch JL, Hilsenbeck SG, Coronado-Heinsohn E, Osborne CK, Yee D (1999) Enhancement of insulin-like growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo. Mol Endocrinol 13:787–796PubMedCrossRefGoogle Scholar
  12. 12.
    Molloy CA, May FE, Westley BR (2000) Insulin receptor substrate-1 expression is regulated by estrogen in the MCF-7 human breast cancer cell line. J Biol Chem 275:12565–12571PubMedCrossRefGoogle Scholar
  13. 13.
    Cui X, Zhang P, Deng W, Oesterreich S, Lu Y, Mills GB, Lee AV (2003) Insulin-like growth factor-I inhibits progesterone receptor expression in breast cancer cells via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway: progesterone receptor as a potential indicator of growth factor activity in breast cancer. Mol Endocrinol 17:575–588PubMedCrossRefGoogle Scholar
  14. 14.
    Pollak M (1998) IGF-I physiology and breast cancer. Recent Results Cancer Res 152:63–70PubMedGoogle Scholar
  15. 15.
    Pollak M (2000) Insulin-like growth factor physiology and cancer risk. Eur J Cancer 36:1224–1228PubMedCrossRefGoogle Scholar
  16. 16.
    Flemming A, Brummer T, Reth M, Jumaa H (2003) The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B cell expansion. Nat Immunol 4:38–43PubMedCrossRefGoogle Scholar
  17. 17.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  18. 18.
    Huang S, Podsypanina K, Chen Y, Cai W, Tsimelzon A, Hilsenbeck S, Li Y (2006) Wnt-1 is dominant over Neu in specifying mammary tumor expression profiles. Technol Cancer Res Treat 5:565–571PubMedGoogle Scholar
  19. 19.
    Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98:31–36PubMedCrossRefGoogle Scholar
  20. 20.
    Simon RM, Korn EL, McShane LM, Radmacher MD, Wright GW, Zhao Y (2004) Design and analysis of DNA microarray investigations. Springer, New YorkGoogle Scholar
  21. 21.
    Creighton CJ, Casa A, Lazard Z, Huang S, Tsimelzon A, Hilsenbeck SG, Osborne CK, Lee AV (2008) Insulin-like growth factor-I activates gene transcription programs strongly associated with poor breast cancer prognosis. J Clin Oncol 26:4078–4085PubMedCrossRefGoogle Scholar
  22. 22.
    Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucl Acids Res 30:207–210PubMedCrossRefGoogle Scholar
  23. 23.
    van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009PubMedCrossRefGoogle Scholar
  24. 24.
    Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Botstein D (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13:1977–2000PubMedCrossRefGoogle Scholar
  25. 25.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874PubMedCrossRefGoogle Scholar
  26. 26.
    Pacher M, Seewald MJ, Mikula M, Oehler S, Mogg M, Vinatzer U, Eger A, Schweifer N, Varecka R, Sommergruber W, Mikulits W, Schreiber M (2007) Impact of constitutive IGF1/IGF2 stimulation on the transcriptional program of human breast cancer cells. Carcinogenesis 28:49–59PubMedCrossRefGoogle Scholar
  27. 27.
    Dupont J, Khan J, Qu BH, Metzler P, Helman L, LeRoith D (2001) Insulin and IGF-1 induce different patterns of gene expression in mouse fibroblast NIH-3T3 cells: identification by cDNA microarray analysis. Endocrinology 142:4969–4975PubMedCrossRefGoogle Scholar
  28. 28.
    Mulligan C, Rochford J, Denyer G, Stephens R, Yeo G, Freeman T, Siddle K, O’Rahilly S (2002) Microarray analysis of insulin and insulin-like growth factor-1 (IGF-1) receptor signaling reveals the selective up-regulation of the mitogen heparin-binding EGF-like growth factor by IGF-1. J Biol Chem 277:42480–42487PubMedCrossRefGoogle Scholar
  29. 29.
    Cicatiello L, Scafoglio C, Altucci L, Cancemi M, Natoli G, Facchiano A, Iazzetti G, Calogero R, Biglia N, De Bortoli M, Sfiligoi C, Sismondi P, Bresciani F, Weisz A (2004) A genomic view of estrogen actions in human breast cancer cells by expression profiling of the hormone-responsive transcriptome. J Mol Endocrinol 32:719–775PubMedCrossRefGoogle Scholar
  30. 30.
    Cunliffe HE, Ringner M, Bilke S, Walker RL, Cheung JM, Chen Y, Meltzer PS (2003) The gene expression response of breast cancer to growth regulators: patterns and correlation with tumor expression profiles. Cancer Res 63:7158–7166PubMedGoogle Scholar
  31. 31.
    Frasor J, Danes JM, Komm B, Chang KC, Lyttle CR, Katzenellenbogen BS (2003) Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology 144:4562–4574PubMedCrossRefGoogle Scholar
  32. 32.
    Lin CY, Strom A, Vega VB, Kong SL, Yeo AL, Thomsen JS, Chan WC, Doray B, Bangarusamy DK, Ramasamy A, Vergara LA, Tang S, Chong A, Bajic VB, Miller LD, Gustafsson JA, Liu ET (2004) Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells. Genome Biol 5:R66PubMedCrossRefGoogle Scholar
  33. 33.
    Watanabe H, Suzuki A, Mizutani T, Khono S, Lubahn DB, Handa H, Iguchi T (2002) Genome-wide analysis of changes in early gene expression induced by oestrogen. Genes Cells 7:497–507PubMedCrossRefGoogle Scholar
  34. 34.
    Malik S, Jiang S, Garee JP, Verdin E, Lee AV, O’Malley BW, Zhang M, Belaguli NS, Oesterreich S (2010) Histone deacetylase 7 and FoxA1 in estrogen-mediated repression of RPRM. Mol Cell Biol 30:399–412PubMedCrossRefGoogle Scholar
  35. 35.
    Katzenellenbogen BS, Norman MJ (1990) Multihormonal regulation of the progesterone receptor in MCF-7 human breast cancer cells: interrelationships among insulin/insulin-like growth factor-I, serum, and estrogen. Endocrinology 126:891–898PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang S, Li X, Burghardt R, Smith R III, Safe SH (2005) Role of estrogen receptor (ER) alpha in insulin-like growth factor (IGF)-I-induced responses in MCF-7 breast cancer cells. J Mol Endocrinol 35:433–447PubMedCrossRefGoogle Scholar
  37. 37.
    Cascio S, Bartella V, Garofalo C, Russo A, Giordano A, Surmacz E (2007) Insulin-like growth factor 1 differentially regulates estrogen receptor-dependent transcription at estrogen response element and AP-1 sites in breast cancer cells. J Biol Chem 282:3498–3506PubMedCrossRefGoogle Scholar
  38. 38.
    Jumaa H, Bossaller L, Portugal K, Storch B, Lotz M, Flemming A, Schrappe M, Postila V, Riikonen P, Pelkonen J, Niemeyer CM, Reth M (2003) Deficiency of the adaptor SLP-65 in pre-B-cell acute lymphoblastic leukaemia. Nature 423:452–456PubMedCrossRefGoogle Scholar
  39. 39.
    Fu C, Turck CW, Kurosaki T, Chan AC (1998) BLNK: a central linker protein in B cell activation. Immunity 9:93–103PubMedCrossRefGoogle Scholar
  40. 40.
    Nakayama J, Yamamoto M, Hayashi K, Satoh H, Bundo K, Kubo M, Goitsuka R, Farrar MA, Kitamura D (2009) BLNK suppresses pre-B-cell leukemogenesis through inhibition of JAK3. Blood 113:1483–1492PubMedCrossRefGoogle Scholar
  41. 41.
    Grabbe A, Wienands J (2006) Human SLP-65 isoforms contribute differently to activation and apoptosis of B lymphocytes. Blood 108:3761–3768PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Angelo J. Casa
    • 1
    • 2
  • Adam S. Potter
    • 1
    • 2
  • Simeen Malik
    • 1
    • 2
  • ZaWaunyka Lazard
    • 1
  • Isere Kuiatse
    • 1
  • Hee-Tae Kim
    • 1
  • Anna Tsimelzon
    • 1
    • 3
  • Chad J. Creighton
    • 3
    • 4
  • Susan G. Hilsenbeck
    • 1
    • 3
  • Powell H. Brown
    • 1
    • 2
    • 3
  • Steffi Oesterreich
    • 1
    • 2
    • 3
  • Adrian V. Lee
    • 1
    • 2
    • 3
    • 5
    Email author
  1. 1.Lester and Sue Smith Breast CenterBaylor College of MedicineHoustonUSA
  2. 2.Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonUSA
  3. 3.Department of MedicineBaylor College of MedicineHoustonUSA
  4. 4.Dan L. Duncan Cancer CenterBaylor College of MedicineHoustonUSA
  5. 5.Department of Pharmacology and Chemical BiologyUniversity of Pittsburgh Cancer Institute, Magee Women’s Research InstitutePittsburghUSA

Personalised recommendations