Advertisement

Breast Cancer Research and Treatment

, Volume 131, Issue 3, pp 891–898 | Cite as

Daintain/AIF-1 promotes breast cancer cell migration by up-regulated TNF-α via activate p38 MAPK signaling pathway

  • Tao Li
  • Zhiguo Feng
  • Shaohui Jia
  • Wei Wang
  • Zhongxia Du
  • Ning Chen
  • Zhengwang Chen
Preclinical Study

Abstract

Tumor-associated macrophages can release a vast diversity of growth factors, proteolytic enzymes, cytokines, and inflammatory mediators. Many of these factors are key agents in cancer metastasis. Daintain/AIF-1 is a macrophage-derived inflammatory cytokine which defined a distinct subset of tumor-associated activated macrophages/microglial cells. Previous study demonstrated that daintain/AIF-1 could promote breast cancer proliferation through activating NF-κB/cyclin D1 pathway and facilitate tumor growth. However, the effect of Daintain/AIF-1 on cell migration and cancer metastasis has never been reported. Herein, we used a mimic tumor microenvironment by incubating breast cancer cell lines, MDA-MB-231 and MCF-7 cells, with macrophage-conditioned medium with or without purified daintain/AIF-1 polypeptide to evaluate cell migration. Results indicated that daintain/AIF-1 enhanced the migration of MDA-MB-231 and MCF-7 cells in the manner of TNF-α up-regulation. Further study found that daintain/AIF-1 activates p38 MAPK signaling pathway contributing to up-regulation of TNF-α in MDA-MB-231 and MCF-7 cells. Therefore, this novel daintain/AIF-1-p38-TNF-α pathway and insight into daintain/AIF-1 might have potential benefits in the control of tumor metastasis during cancer therapy.

Keywords

Inflammatory cytokine Daintain/AIF-1 TNF-α Breast cancer cell p38 MAPK Cell migration 

Abbreviations

NF-κB

Nuclear factor-κB

MAPK

Mitogen-activated protein kinase

TNF-α

Tumor necrosis α

CM

Conditioned medium

AIF-1 siRNA

siRNA knockdown of daintain/AIF-1 in U937 cell

EMT

Epithelial–mesenchymal transition

Notes

Acknowledgments

This work was supported by the National Science Foundation of China (Grants 30370647 and 30470823) and Chinese 863 Program (2002AA214061).

References

  1. 1.
    Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217. doi: 10.1016/j.ccr.2005.02.013 PubMedCrossRefGoogle Scholar
  2. 2.
    Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545PubMedCrossRefGoogle Scholar
  3. 3.
    Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444. doi: 10.1038/Nature07205 PubMedCrossRefGoogle Scholar
  4. 4.
    Sethi G, Sung B, Aggarwal BB (2008) TNF: a master switch for inflammation to cancer. Front Biosci 13:5094–5107PubMedCrossRefGoogle Scholar
  5. 5.
    Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081. doi: 10.1093/carcin/bgp127 PubMedCrossRefGoogle Scholar
  6. 6.
    Balkwill F, Mantovani A (2010) Cancer and inflammation: implications for pharmacology and therapeutics. Clin Pharmacol Ther 87:401–406. doi: 10.1038/clpt.2009.312 PubMedCrossRefGoogle Scholar
  7. 7.
    Egberts JH, Cloosters V, Noack A, Schniewind B, Thon L, Klose S, Kettler B, von Forstner C, Kneitz C, Tepel J et al (2008) Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res 68:1443–1450. doi: 10.1158/0008-5472.CAN-07-5704 PubMedCrossRefGoogle Scholar
  8. 8.
    Stathopoulos GT, Kollintza A, Moschos C, Psallidas I, Sherrill TP, Pitsinos EN, Vassiliou S, Karatza M, Papiris SA, Graf D, Orphanidou D, Light RW, Roussos C, Blackwell TS, Kalomenidis I (2007) Tumor necrosis factor-α promotes malignant pleural effusion. Cancer Research 67:9825–9834PubMedCrossRefGoogle Scholar
  9. 9.
    Kulbe H, Thompson R, Wilson JL, Robinson S, Hagemann T, Fatah R, Gould D, Ayhan A, Balkwill F (2007) The inflammatory cytokine TNF-α generates an autocrine tumour-promoting network in epithelial ovarian cancer cells. Cancer Res 67:585–592PubMedCrossRefGoogle Scholar
  10. 10.
    Suganuma M, Okabe S, Marino MW, Sakai A, Sueoka E, Fujiki H (1999) Essential role of tumor necrosis factor α (TNF-α) in tumor promotion as revealed by TNF-α-deficient mice. Cancer Res 59:4516–4518PubMedGoogle Scholar
  11. 11.
    Zins K, Abraham D, Sioud M, Aharinejad S (2007) Colon cancer cell-derived tumor necrosis factor-alpha mediates the tumor growth-promoting response in macrophages by up-regulating the colony-stimulating factor-1 pathway. Cancer Res 67:1038–1045. doi: 10.1158/0008-5472.CAN-06-2295 PubMedCrossRefGoogle Scholar
  12. 12.
    Deininger MH, Meyermann R, Schluesener HJ (2002) The allograft inflammatory factor-1 family of proteins. FEBS Lett 514:115–121. doi: 10.1016/S0014-5793(02)02430-4 PubMedCrossRefGoogle Scholar
  13. 13.
    Iris FJM, Bougueleret L, Prieur S, Caterina D, Primas G, Perrot V, Jurka J, Rodriguez-Tome P, Claverie JM, Dansset J, Cohen D (1993) Dense Alu clustering and a potential new member of the NF kappa B family within a 90 kilobase HLA class III segment. Nat Genet 3:137–145PubMedCrossRefGoogle Scholar
  14. 14.
    Autieri MV, Carbone C, Mu AB (2000) Expression of allograft inflammatory factor-1 is a marker of activated human vascular smooth muscle cells and arterial injury. Arterioscler Thromb Vasc 20:1737–1744CrossRefGoogle Scholar
  15. 15.
    Nagakawaa Y, Nomoto S, Kato Y, Montgomery RA, Williams GM, Klein AS, Zi Sun (2004) Over-expression of AIF-1 in liver allografts and peripheral blood correlates with acute rejection after transplantation in rats. Am J Transpl 2004:1949–1957CrossRefGoogle Scholar
  16. 16.
    Koshiba H, Kitawaki J, Teramoto M, Kitaoka Y, Ishihara H, Obayashi H, Ohta M, Hara H, Adachi T, Honjo H (2005) Expression of allograft inflammatory factor-1 in human eutopic endometrium and endometriosis: possible association with progression of endometriosis. J Clin Endocrinol Metab 90:529–537. doi: 10.1210/jc.2004-0871 PubMedCrossRefGoogle Scholar
  17. 17.
    Autieri MV, Kelemen SE, Wendt KW (2003) AIF-1 is an actin-polymerizing and Rac1-activating protein that promotes vascular smooth muscle cell migration. Circ Res 92:1107–1114. doi: 10.1161/01.Res.0000074000.03562.Cc PubMedCrossRefGoogle Scholar
  18. 18.
    Liu S, Tan WY, Chen QR, Chen XP, Fu K, Zhao YY, Chen ZW (2008) Daintain/AIF-1 promotes breast cancer proliferation via activation of the NF-kappaB/cyclin D1 pathway and facilitates tumor growth. Cancer Sci 99:952–957. doi: 10.1111/j.1349-7006.2008.00787.x PubMedCrossRefGoogle Scholar
  19. 19.
    Deininger M, Seid K, Meyermann R, Schluesener HJ (1999) Allograft inflammatory factor-1 (AIF-1) is expressed by activated macrophages and microglia in the vessel walls of human and rat brain tumors and rat autoimmune disease. J Vasc Res 36:187–188Google Scholar
  20. 20.
    Yang ZF, Ho DW, Lau CK, Lam CT, Lum CT, Poon RTP, Fan ST (2005) Allograft inflammatory factor-1 (AIF-1) is crucial for the survival and pro-inflammatory activity of macrophages. Int Immunol 17:1391–1397. doi: 10.1093/intimm/dxh316 PubMedCrossRefGoogle Scholar
  21. 21.
    Chen ZW, Ahren B, Ostenson CG, Cintra A, Bergman T, Moller C, Fuxe K, Mutt V, Jornvall H, Efendic S (1997) Identification, isolation, and characterization of daintain (allograft inflammatory factor 1), a macrophage polypeptide with effects on insulin secretion and abundantly present in the pancreas of prediabetic BB rats. Proc Natl Acad Sci USA 94:13879–13884PubMedCrossRefGoogle Scholar
  22. 22.
    De Marzo AM, Marchi VL, Epstein JI, Nelson WG (1999) Proliferative inflammatory atrophy of the prostate—implications for prostatic carcinogenesis. Am J Pathol 155:1985–1992PubMedCrossRefGoogle Scholar
  23. 23.
    Kuper H, Adami HO, Trichopoulos D (2001) Infections as a major preventable cause of human cancer. J Intern Med 249:61–73CrossRefGoogle Scholar
  24. 24.
    Van Kempen LCL, De Visser KE, Coussens LM (2006) Inflammation, proteases and cancer. Eur J Cancer 42:728–734. doi: 10.1016/j.ejca.2006.01.004 PubMedCrossRefGoogle Scholar
  25. 25.
    Chen X, Kelemen SE, Autieri MV (2004) AIF-1 expression modulates proliferation of human vascular smooth muscle cells by autocrine expression of G-CSF. Arterioscler Thromb Vasc Biol 24:1217–1222PubMedCrossRefGoogle Scholar
  26. 26.
    Wu Y, Zhou BP (2010) TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer 102:639–644. doi: 10.1038/sj.bjc.6605530 PubMedCrossRefGoogle Scholar
  27. 27.
    Grivennikov SI, Tumanov AV, Liepinsh DJ, Kruglov AA, Marakusha BI, Shakhov AN, Murakami T, Drutskaya LN, Forster I, Clausen BE et al (2005) Distinct and nonredundant in vivo functions of TNF produced by T cells and macrophages/neutrophils: protective and deleterious effects. Immunity 22:93–104. doi: 10.1016/j.immuni.2004.11.016 PubMedGoogle Scholar
  28. 28.
    Orosz P, Echtenacher B, Falk W, Ruschoff J, Weber D, Mannel DN (1993) Enhancement of experimental metastasis by tumor necrosis factor. J Exp Med 177:1391–1398PubMedCrossRefGoogle Scholar
  29. 29.
    Bates RC, Mercurio AM (2003) Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol Biol Cell 14:1790–1800. doi: 10.1091/mbc.E02-09-0583 PubMedCrossRefGoogle Scholar
  30. 30.
    Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y, Luo JL, Karin M (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:U102–U108. doi: 10.1038/Nature07623 CrossRefGoogle Scholar
  31. 31.
    Hugo HJ, Wafai R, Blick T, Thompson EW, Newgreen DF (2009) Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction—a model for cross-modulation. BMC Cancer 9:235. doi: 10.1186/1471-2407-9-235 PubMedCrossRefGoogle Scholar
  32. 32.
    Yilmaz M, Christofori G (2010) Mechanisms of motility in metastasizing cells. Mol Cancer Res 8:629–642. doi: 10.1158/1541-7786.Mcr-10-0139 PubMedCrossRefGoogle Scholar
  33. 33.
    Estrela-Lima A, Araujo MS, Costa-Neto JM, Teixeira-Carvalho A, Barrouin-Melo SM, Cardoso SV, Martins-Filho OA, Serakides R, Cassali GD (2010) Immunophenotypic features of tumor infiltrating lymphocytes from mammary carcinomas in female dogs associated with prognostic factors and survival rates. BMC Cancer 10:256. doi: 10.1186/1471-2407-10-256 PubMedCrossRefGoogle Scholar
  34. 34.
    Chen JJW, Lin YC, Yao PL, Yuan A, Chen HY, Shun CT, Tsai MF, Chen CH, Yang PC (2005) Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol 23:953–964. doi: 10.1200/Jco.2005.12.172 PubMedCrossRefGoogle Scholar
  35. 35.
    Sica A (2010) Role of tumour-associated macrophages in cancer-related inflammation. Exp Oncol 32:153–158PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Tao Li
    • 1
  • Zhiguo Feng
    • 1
    • 2
  • Shaohui Jia
    • 1
  • Wei Wang
    • 1
  • Zhongxia Du
    • 1
  • Ning Chen
    • 3
  • Zhengwang Chen
    • 1
  1. 1.Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.College of Life ScienceXinyang Normal UniversityXinyangPeople’s Republic of China
  3. 3.The Cancer Institute of New JerseyNew BrunswickUSA

Personalised recommendations