Signaling mechanism of cell adhesion molecules in breast cancer metastasis: potential therapeutic targets

Review

Abstract

Metastasis is responsible for the majority of breast cancer-related deaths. The metastatic spread of cancer cells is a complicated process that requires considerable flexibility in the adhesive properties of both tumor cells and other interacting cells. Cell adhesion molecules (CAMs) are membrane receptors that mediate cell–cell and cell–matrix interactions, and are essential for transducing intracellular signals responsible for adhesion, migration, invasion, angiogensis, and organ-specific metastasis. This review will discuss the recent advances in our understanding on the biological functions, signaling mechanisms, and therapeutic potentials of important CAMs involved in breast cancer metastasis.

Keywords

Cell adhesion molecules Breast cancer Metastasis 

References

  1. 1.
    Makrilia N, Kollias A, Manolopoulos L, Syrigos K (2009) Cell adhesion molecules: role and clinical significance in cancer. Cancer Investig 27:1023–1037CrossRefGoogle Scholar
  2. 2.
    Gonzalez-Amaro R, Sanchez-Madrid F (1999) Cell adhesion molecules: selectins and integrins. Crit Rev Immunol 19:389–429PubMedGoogle Scholar
  3. 3.
    Rojas AI, Ahmed AR (1999) Adhesion receptors in health and disease. Crit Rev Oral Biol Med 10:337–358PubMedCrossRefGoogle Scholar
  4. 4.
    Koch AW, Manzur KL, Shan W (2004) Structure-based models of cadherin-mediated cell adhesion: the evolution continues. Cell Mol Life Sci 61:1884–1895PubMedCrossRefGoogle Scholar
  5. 5.
    Halbleib JM, Nelson WJ (2006) Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 20:3199–3214PubMedCrossRefGoogle Scholar
  6. 6.
    Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4:118–132PubMedCrossRefGoogle Scholar
  7. 7.
    Pokutta S, Weis WI (2007) Structure and mechanism of cadherins and catenins in cell-cell contacts. Annu Rev Cell Dev Biol 23:237–261PubMedCrossRefGoogle Scholar
  8. 8.
    Rivard N (2009) Phosphatidylinositol 3-kinase: a key regulator in adherens junction formation and function. Front Biosci 14:510–522PubMedCrossRefGoogle Scholar
  9. 9.
    Ishiyama N, Lee SH, Liu S, Li GY, Smith MJ, Reichardt LF, Ikura M (2010) Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell-cell adhesion. Cell 141:117–128PubMedCrossRefGoogle Scholar
  10. 10.
    Mousa SA (2008) Cell adhesion molecules: potential therapeutic & diagnostic implications. Mol Biotechnol 38:33–40PubMedCrossRefGoogle Scholar
  11. 11.
    Herzig M, Savarese F, Novatchkova M, Semb H, Christofori G (2007) Tumor progression induced by the loss of E-cadherin independent of beta-catenin/Tcf-mediated Wnt signaling. Oncogene 26:2290–2298PubMedCrossRefGoogle Scholar
  12. 12.
    Matteucci E, Ridolfi E, Desiderio MA (2006) Hepatocyte growth factor differently influences Met-E-cadherin phosphorylation and downstream signaling pathway in two models of breast cells. Cell Mol Life Sci 63:2016–2026PubMedCrossRefGoogle Scholar
  13. 13.
    Orsulic S, Huber O, Aberle H, Arnold S, Kemler R (1999) E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. J Cell Sci 112(Pt 8):1237–1245PubMedGoogle Scholar
  14. 14.
    Wong AS, Gumbiner BM (2003) Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J Cell Biol 161:1191–1203PubMedCrossRefGoogle Scholar
  15. 15.
    Shibata T, Kokubu A, Sekine S, Kanai Y, Hirohashi S (2004) Cytoplasmic p120ctn regulates the invasive phenotypes of E-cadherin-deficient breast cancer. Am J Pathol 164:2269–2278PubMedCrossRefGoogle Scholar
  16. 16.
    Pennisi PA, Barr V, Nunez NP, Stannard B, Le Roith D (2002) Reduced expression of insulin-like growth factor I receptors in MCF-7 breast cancer cells leads to a more metastatic phenotype. Cancer Res 62:6529–6537PubMedGoogle Scholar
  17. 17.
    Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA (2008) Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68:3645–3654PubMedCrossRefGoogle Scholar
  18. 18.
    Dong HM, Liu G, Wu J, Lu JS, Luo JM, Shen ZZ, Shao ZM (2006) Biological significance of E-cadherin in an inflammatory breast carcinoma cell line. Zhonghua Zhong Liu Za Zhi 28:4–7PubMedGoogle Scholar
  19. 19.
    Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17:548–558PubMedCrossRefGoogle Scholar
  20. 20.
    Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA (2000) Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 148:779–790PubMedCrossRefGoogle Scholar
  21. 21.
    Nieman MT, Prudoff RS, Johnson KR, Wheelock MJ (1999) N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol 147:631–644PubMedCrossRefGoogle Scholar
  22. 22.
    Kim JB, Islam S, Kim YJ, Prudoff RS, Sass KM, Wheelock MJ, Johnson KR (2000) N-Cadherin extracellular repeat 4 mediates epithelial to mesenchymal transition and increased motility. J Cell Biol 151:1193–1206PubMedCrossRefGoogle Scholar
  23. 23.
    Suyama K, Shapiro I, Guttman M, Hazan RB (2002) A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2:301–314PubMedCrossRefGoogle Scholar
  24. 24.
    Hulit J, Suyama K, Chung S, Keren R, Agiostratidou G, Shan W, Dong X, Williams TM, Lisanti MP, Knudsen K, Hazan RB (2007) N-cadherin signaling potentiates mammary tumor metastasis via enhanced extracellular signal-regulated kinase activation. Cancer Res 67:3106–3116PubMedCrossRefGoogle Scholar
  25. 25.
    Navarro P, Ruco L, Dejana E (1998) Differential localization of VE- and N-cadherins in human endothelial cells: VE-cadherin competes with N-cadherin for junctional localization. J Cell Biol 140:1475–1484PubMedCrossRefGoogle Scholar
  26. 26.
    Ramis-Conde I, Chaplain MA, Anderson AR, Drasdo D (2009) Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis. Phys Biol 6:016008PubMedCrossRefGoogle Scholar
  27. 27.
    Li H, Price DK, Figg WD (2007) ADH1, an N-cadherin inhibitor, evaluated in preclinical models of angiogenesis and androgen-independent prostate cancer. Anticancer Drugs 18:563–568PubMedCrossRefGoogle Scholar
  28. 28.
    Kelland L (2007) Drug evaluation: ADH-1, an N-cadherin antagonist targeting cancer vascularization. Curr Opin Mol Ther 9:86–91PubMedGoogle Scholar
  29. 29.
    Shintani Y, Fukumoto Y, Chaika N, Grandgenett PM, Hollingsworth MA, Wheelock MJ, Johnson KR (2008) ADH-1 suppresses N-cadherin-dependent pancreatic cancer progression. Int J Cancer 122:71–77PubMedCrossRefGoogle Scholar
  30. 30.
    Perotti A, Sessa C, Mancuso A, Noberasco C, Cresta S, Locatelli A, Carcangiu ML, Passera K, Braghetti A, Scaramuzza D, Zanaboni F, Fasolo A, Capri G, Miani M, Peters WP, Gianni L (2009) Clinical and pharmacological phase I evaluation of Exherin (ADH-1), a selective anti-N-cadherin peptide in patients with N-cadherin-expressing solid tumours. Ann Oncol 20:741–745PubMedCrossRefGoogle Scholar
  31. 31.
    Wallez Y, Vilgrain I, Huber P (2006) Angiogenesis: the VE-cadherin switch. Trends Cardiovasc Med 16:55–59PubMedCrossRefGoogle Scholar
  32. 32.
    Parker BS, Argani P, Cook BP, Liangfeng H, Chartrand SD, Zhang M, Saha S, Bardelli A, Jiang Y, St Martin TB, Nacht M, Teicher BA, Klinger KW, Sukumar S, Madden SL (2004) Alterations in vascular gene expression in invasive breast carcinoma. Cancer Res 64:7857–7866PubMedCrossRefGoogle Scholar
  33. 33.
    Liao F, Li Y, O’Connor W, Zanetta L, Bassi R, Santiago A, Overholser J, Hooper A, Mignatti P, Dejana E, Hicklin DJ, Bohlen P (2000) Monoclonal antibody to vascular endothelial-cadherin is a potent inhibitor of angiogenesis, tumor growth, and metastasis. Cancer Res 60:6805–6810PubMedGoogle Scholar
  34. 34.
    Corada M, Zanetta L, Orsenigo F, Breviario F, Lampugnani MG, Bernasconi S, Liao F, Hicklin DJ, Bohlen P, Dejana E (2002) A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood 100:905–911PubMedCrossRefGoogle Scholar
  35. 35.
    Sahni A, Arevalo MT, Sahni SK, Simpson-Haidaris PJ (2009) The VE-cadherin binding domain of fibrinogen induces endothelial barrier permeability and enhances transendothelial migration of malignant breast epithelial cells. Int J Cancer 125:577–584PubMedCrossRefGoogle Scholar
  36. 36.
    Labelle M, Schnittler HJ, Aust DE, Friedrich K, Baretton G, Vestweber D, Breier G (2008) Vascular endothelial cadherin promotes breast cancer progression via transforming growth factor beta signaling. Cancer Res 68:1388–1397PubMedCrossRefGoogle Scholar
  37. 37.
    Nose A, Shirayoshi Y, Takeichi M (1986) Expression pattern of E-cadherin and P-cadherin associated with morphogenesis of mouse embryos. Dev Growth Differ 28:389–390Google Scholar
  38. 38.
    Paredes J, Correia AL, Ribeiro AS, Albergaria A, Milanezi F, Schmitt FC (2007) P-cadherin expression in breast cancer: a review. Breast Cancer Res 9:214PubMedCrossRefGoogle Scholar
  39. 39.
    Turashvili G, McKinney SE, Goktepe O, Leung SC, Huntsman DG, Gelmon KA, Los G, Rejto PA, Aparicio SA (2011) P-cadherin expression as a prognostic biomarker in a 3992 case tissue microarray series of breast cancer. Mod Pathol 24:64–81PubMedCrossRefGoogle Scholar
  40. 40.
    Ribeiro AS, Albergaria A, Sousa B, Correia AL, Bracke M, Seruca R, Schmitt FC, Paredes J (2010) Extracellular cleavage and shedding of P-cadherin: a mechanism underlying the invasive behaviour of breast cancer cells. Oncogene 29:392–402PubMedCrossRefGoogle Scholar
  41. 41.
    Paredes J, Stove C, Stove V, Milanezi F, Van Marck V, Derycke L, Mareel M, Bracke M, Schmitt F (2004) P-cadherin is up-regulated by the antiestrogen ICI 182, 780 and promotes invasion of human breast cancer cells. Cancer Res 64:8309–8317PubMedCrossRefGoogle Scholar
  42. 42.
    Agiostratidou G, Li M, Suyama K, Badano I, Keren R, Chung S, Anzovino A, Hulit J, Qian B, Bouzahzah B, Eugenin E, Loudig O, Phillips GR, Locker J, Hazan RB (2009) Loss of retinal cadherin facilitates mammary tumor progression and metastasis. Cancer Res 69:5030–5038PubMedCrossRefGoogle Scholar
  43. 43.
    Johnson E, Theisen CS, Johnson KR, Wheelock MJ (2004) R-cadherin influences cell motility via Rho family GTPases. J Biol Chem 279:31041–31049PubMedCrossRefGoogle Scholar
  44. 44.
    Maeda M, Johnson E, Mandal SH, Lawson KR, Keim SA, Svoboda RA, Caplan S, Wahl JK III, Wheelock MJ, Johnson KR (2006) Expression of inappropriate cadherins by epithelial tumor cells promotes endocytosis and degradation of E-cadherin via competition for p120(ctn). Oncogene 25:4595–4604PubMedCrossRefGoogle Scholar
  45. 45.
    Laubli H, Borsig L (2010) Selectins promote tumor metastasis. Semin Cancer Biol 20(3):169–177PubMedCrossRefGoogle Scholar
  46. 46.
    Kansas GS (1996) Selectins and their ligands: current concepts and controversies. Blood 88:3259–3287PubMedGoogle Scholar
  47. 47.
    Pinho SS, Matos AJ, Lopes C, Marcos NT, Carvalheira J, Reis CA, Gartner F (2007) Sialyl Lewis x expression in canine malignant mammary tumours: correlation with clinicopathological features and E-cadherin expression. BMC Cancer 7:124PubMedCrossRefGoogle Scholar
  48. 48.
    Pinho SS, Reis CA, Gartner F, Alpaugh ML (2009) Molecular plasticity of E-cadherin and sialyl lewis x expression, in two comparative models of mammary tumorigenesis. PLoS One 4:e6636PubMedCrossRefGoogle Scholar
  49. 49.
    Jeschke U, Mylonas I, Shabani N, Kunert-Keil C, Schindlbeck C, Gerber B, Friese K (2005) Expression of sialyl lewis X, sialyl Lewis A, E-cadherin and cathepsin-D in human breast cancer: immunohistochemical analysis in mammary carcinoma in situ, invasive carcinomas and their lymph node metastasis. Anticancer Res 25:1615–1622PubMedGoogle Scholar
  50. 50.
    Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689PubMedCrossRefGoogle Scholar
  51. 51.
    Barthel SR, Gavino JD, Descheny L, Dimitroff CJ (2007) Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin Ther Targets 11:1473–1491PubMedCrossRefGoogle Scholar
  52. 52.
    Wei J, Cui L, Liu F, Fan Y, Lang R, Gu F, Guo X, Tang P, Fu L (2010) E-selectin and Sialyl Lewis X expression is associated with lymph node metastasis of invasive micropapillary carcinoma of the breast. Int J Surg Pathol 18:193–200PubMedCrossRefGoogle Scholar
  53. 53.
    Shaker OG, Ay El-Deen MA, Abd El-Rahim MT, Talaat RM (2006) Gene expression of E-selectin in tissue and its protein level in serum of breast cancer patients. Tumori 92:524–530PubMedGoogle Scholar
  54. 54.
    Vannini N, Pfeffer U, Lorusso G, Noonan DM, Albini A (2008) Endothelial cell aging and apoptosis in prevention and disease: E-selectin expression and modulation as a model. Curr Pharm Des 14:221–225PubMedCrossRefGoogle Scholar
  55. 55.
    Lafrenie RM, Gallo S, Podor TJ, Buchanan MR, Orr FW (1994) The relative roles of vitronectin receptor, E-selectin and alpha 4 beta 1 in cancer cell adhesion to interleukin-1-treated endothelial cells. Eur J Cancer 30A:2151–2158PubMedCrossRefGoogle Scholar
  56. 56.
    Tozeren A, Kleinman HK, Grant DS, Morales D, Mercurio AM, Byers SW (1995) E-selectin-mediated dynamic interactions of breast- and colon-cancer cells with endothelial-cell monolayers. Int J Cancer 60:426–431PubMedCrossRefGoogle Scholar
  57. 57.
    Narita T, Kawasaki-Kimura N, Matsuura N, Funahashi H, Kannagi R (1996) Adhesion of human breast cancer cells to vascular endothelium mediated by sialyl Lewis &supx;/E-selectin. Breast Cancer 3:19–23PubMedCrossRefGoogle Scholar
  58. 58.
    Yuan K, Kucik D, Singh RK, Listinsky CM, Listinsky JJ, Siegal GP (2008) Alterations in human breast cancer adhesion-motility in response to changes in cell surface glycoproteins displaying alpha-L-fucose moieties. Int J Oncol 32:797–807PubMedGoogle Scholar
  59. 59.
    Zen K, Liu DQ, Guo YL, Wang C, Shan J, Fang M, Zhang CY, Liu Y (2008) CD44v4 is a major E-selectin ligand that mediates breast cancer cell transendothelial migration. PLoS One 3:e1826PubMedCrossRefGoogle Scholar
  60. 60.
    Shamay Y, Paulin D, Ashkenasy G, David A (2009) E-selectin binding peptide-polymer-drug conjugates and their selective cytotoxicity against vascular endothelial cells. Biomaterials 30:6460–6468PubMedCrossRefGoogle Scholar
  61. 61.
    Hirai M, Hiramatsu Y, Iwashita S, Otani T, Chen L, Li YG, Okada M, Oie K, Igarashi K, Wakita H, Seno M (2010) E-selectin targeting to visualize tumors in vivo. Contrast Media Mol Imaging 5:70–77PubMedGoogle Scholar
  62. 62.
    Nash GF, Turner LF, Scully MF, Kakkar AK (2002) Platelets and cancer. Lancet Oncol 3:425–430PubMedCrossRefGoogle Scholar
  63. 63.
    Kim YJ, Borsig L, Varki NM, Varki A (1998) P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci USA 95:9325–9330PubMedCrossRefGoogle Scholar
  64. 64.
    Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A (2001) Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci USA 98:3352–3357PubMedCrossRefGoogle Scholar
  65. 65.
    Fox SB, Turner GD, Gatter KC, Harris AL (1995) The increased expression of adhesion molecules ICAM-3, E- and P-selectins on breast cancer endothelium. J Pathol 177:369–376PubMedCrossRefGoogle Scholar
  66. 66.
    Caine GJ, Lip GY, Blann AD (2004) Platelet-derived VEGF, Flt-1, angiopoietin-1 and P-selectin in breast and prostate cancer: further evidence for a role of platelets in tumour angiogenesis. Ann Med 36:273–277PubMedCrossRefGoogle Scholar
  67. 67.
    Blann AD, Gurney D, Wadley M, Bareford D, Stonelake P, Lip GY (2001) Increased soluble P-selectin in patients with haematological and breast cancer: a comparison with fibrinogen, plasminogen activator inhibitor and von Willebrand factor. Blood Coagul Fibrinolysis 12:43–50PubMedCrossRefGoogle Scholar
  68. 68.
    Aigner S, Ramos CL, Hafezi-Moghadam A, Lawrence MB, Friederichs J, Altevogt P, Ley K (1998) CD24 mediates rolling of breast carcinoma cells on P-selectin. FASEB J 12:1241–1251PubMedGoogle Scholar
  69. 69.
    Monzavi-Karbassi B, Stanley JS, Hennings L, Jousheghany F, Artaud C, Shaaf S, Kieber-Emmons T (2007) Chondroitin sulfate glycosaminoglycans as major P-selectin ligands on metastatic breast cancer cell lines. Int J Cancer 120:1179–1191PubMedCrossRefGoogle Scholar
  70. 70.
    Rosen SD (2004) Ligands for L-selectin: homing, inflammation, and beyond. Annu Rev Immunol 22:129–156PubMedCrossRefGoogle Scholar
  71. 71.
    Laubli H, Stevenson JL, Varki A, Varki NM, Borsig L (2006) L-selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest. Cancer Res 66:1536–1542PubMedCrossRefGoogle Scholar
  72. 72.
    Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, Lang RA, Pollard JW (2009) A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 4:e6562PubMedCrossRefGoogle Scholar
  73. 73.
    Rathinam R, Alahari SK (2010) Important role of integrins in the cancer biology. Cancer Metastasis Rev 29:223–237PubMedCrossRefGoogle Scholar
  74. 74.
    Harburger D, Calderwood D (2009) Integrin signalling at a glance. J Cell Sci 122:159–163PubMedCrossRefGoogle Scholar
  75. 75.
    Mauro L, Sisci D, Bartucci M, Salerno M, Kim J, Tam T, Guvakova MA, Ando S, Surmacz E (1999) SHC-alpha5beta1 integrin interactions regulate breast cancer cell adhesion and motility. Exp Cell Res 252:439–448PubMedCrossRefGoogle Scholar
  76. 76.
    Imanishi Y, Hu B, Jarzynka MJ, Guo P, Elishaev E, Bar-Joseph I, Cheng SY (2007) Angiopoietin-2 stimulates breast cancer metastasis through the alpha(5)beta(1) integrin-mediated pathway. Cancer Res 67:4254–4263PubMedCrossRefGoogle Scholar
  77. 77.
    Bianchi A, Gervasi ME, Bakin AV (2010) Role of beta5-integrin in epithelial-mesenchymal transition in response to TGFbeta. Cell Cycle 9Google Scholar
  78. 78.
    Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100PubMedCrossRefGoogle Scholar
  79. 79.
    Gilcrease MZ, Zhou X, Lu X, Woodward WA, Hall BE, Morrissey PJ (2009) Alpha6beta4 integrin crosslinking induces EGFR clustering and promotes EGF-mediated Rho activation in breast cancer. J Exp Clin Cancer Res 28:67PubMedCrossRefGoogle Scholar
  80. 80.
    Morozevich G, Kozlova N, Cheglakov I, Ushakova N, Berman A (2009) Integrin alpha5beta1 controls invasion of human breast carcinoma cells by direct and indirect modulation of MMP-2 collagenase activity. Cell Cycle 8:2219–2225PubMedCrossRefGoogle Scholar
  81. 81.
    Mitchell K, Svenson KB, Longmate WM, Gkirtzimanaki K, Sadej R, Wang X, Zhao J, Eliopoulos AG, Berditchevski F, Dipersio CM (2010) Suppression of integrin alpha3beta1 in breast cancer cells reduces cyclooxygenase-2 gene expression and inhibits tumorigenesis, invasion, and cross-talk to endothelial cells. Cancer Res 70:6359–6367PubMedCrossRefGoogle Scholar
  82. 82.
    Larkins TL, Nowell M, Singh S, Sanford GL (2006) Inhibition of cyclooxygenase-2 decreases breast cancer cell motility, invasion and matrix metalloproteinase expression. BMC Cancer 6:181PubMedCrossRefGoogle Scholar
  83. 83.
    Rolli M, Fransvea E, Pilch J, Saven A, Felding-Habermann B (2003) Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci USA 100:9482–9487PubMedCrossRefGoogle Scholar
  84. 84.
    Baum O, Hlushchuk R, Forster A, Greiner R, Clezardin P, Zhao Y, Djonov V, Gruber G (2007) Increased invasive potential and up-regulation of MMP-2 in MDA-MB-231 breast cancer cells expressing the beta3 integrin subunit. Int J Oncol 30:325–332PubMedGoogle Scholar
  85. 85.
    Mi Z, Guo H, Wai PY, Gao C, Kuo PC (2006) Integrin-linked kinase regulates osteopontin-dependent MMP-2 and uPA expression to convey metastatic function in murine mammary epithelial cancer cells. Carcinogenesis 27:1134–1145PubMedCrossRefGoogle Scholar
  86. 86.
    Felding-Habermann B, O’Toole TE, Smith JW, Fransvea E, Ruggeri ZM, Ginsberg MH, Hughes PE, Pampori N, Shattil SJ, Saven A, Mueller BM (2001) Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci USA 98:1853–1858PubMedCrossRefGoogle Scholar
  87. 87.
    Gomes N, Vassy J, Lebos C, Arbeille B, Legrand C, Fauvel-Lafeve F (2004) Breast adenocarcinoma cell adhesion to the vascular subendothelium in whole blood and under flow conditions: effects of alphavbeta3 and alphaIIbbeta3 antagonists. Clin Exp Metastasis 21:553–561PubMedCrossRefGoogle Scholar
  88. 88.
    Sloan EK, Pouliot N, Stanley KL, Chia J, Moseley JM, Hards DK, Anderson RL (2006) Tumor-specific expression of alphavbeta3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Cancer Res 8:R20PubMedCrossRefGoogle Scholar
  89. 89.
    Abdel-Ghany M, Cheng HC, Elble RC, Pauli BU (2001) The breast cancer beta 4 integrin and endothelial human CLCA2 mediate lung metastasis. J Biol Chem 276:25438–25446PubMedCrossRefGoogle Scholar
  90. 90.
    Serini G, Napione L, Arese M, Bussolino F (2008) Besides adhesion: new perspectives of integrin functions in angiogenesis. Cardiovasc Res 78:213–222PubMedCrossRefGoogle Scholar
  91. 91.
    Avraamides CJ, Garmy-Susini B, Varner JA (2008) Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 8:604–617PubMedCrossRefGoogle Scholar
  92. 92.
    Garmy-Susini B, Varner JA (2008) Roles of integrins in tumor angiogenesis and lymphangiogenesis. Lymphat Res Biol 6:155–163PubMedCrossRefGoogle Scholar
  93. 93.
    Somanath PR, Malinin NL, Byzova TV (2009) Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis 12:177–185PubMedCrossRefGoogle Scholar
  94. 94.
    Boudreau N, Myers C (2003) Breast cancer-induced angiogenesis: multiple mechanisms and the role of the microenvironment. Breast Cancer Res 5:140–146PubMedCrossRefGoogle Scholar
  95. 95.
    Germain M, De Arcangelis A, Robinson SD, Baker M, Tavora B, D’Amico G, Silva R, Kostourou V, Reynolds LE, Watson A, Jones JL, Georges-Labouesse E, Hodivala-Dilke K (2010) Genetic ablation of the alpha 6-integrin subunit in Tie1Cre mice enhances tumour angiogenesis. J Pathol 220:370–381PubMedGoogle Scholar
  96. 96.
    Chung J, Yoon S, Datta K, Bachelder RE, Mercurio AM (2004) Hypoxia-induced vascular endothelial growth factor transcription and protection from apoptosis are dependent on alpha6beta1 integrin in breast carcinoma cells. Cancer Res 64:4711–4716PubMedCrossRefGoogle Scholar
  97. 97.
    Yoon SO, Shin S, Mercurio AM (2005) Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha6beta4 integrin. Cancer Res 65:2761–2769PubMedCrossRefGoogle Scholar
  98. 98.
    Soung YH, Clifford JL, Chung J (2010) Crosstalk between integrin and receptor tyrosine kinase signaling in breast carcinoma progression. BMB Rep 43:311–318PubMedCrossRefGoogle Scholar
  99. 99.
    Oloumi A, McPhee T, Dedhar S (2004) Regulation of E-cadherin expression and beta-catenin/Tcf transcriptional activity by the integrin-linked kinase. Biochimica Et Biophysica Acta-Molecular Cell Research 1691:1–15CrossRefGoogle Scholar
  100. 100.
    Hersey P, Sosman J, O’Day S, Richards J, Bedikian A, Gonzalez R, Sharfman W, Weber R, Logan T, Buzoianu M, Hammershaimb L, Kirkwood JM (2010) A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin alpha(v)beta(3), + or − dacarbazine in patients with stage IV metastatic melanoma. Cancer 116:1526–1534PubMedCrossRefGoogle Scholar
  101. 101.
    Moschos SJ, Sander CA, Wang W, Reppert SL, Drogowski LM, Jukic DM, Rao UN, Athanassiou C, Buzoianu M, Mandic M, Richman L, McKinney L, Leininger J, Tice DA, Hammershaimb L, Kirkwood JM (2010) Pharmacodynamic (phase 0) study using etaracizumab in advanced melanoma. J Immunother 33:316–325PubMedCrossRefGoogle Scholar
  102. 102.
    Cai W, Wu Y, Chen K, Cao Q, Tice DA, Chen X (2006) In vitro and in vivo characterization of 64Cu-labeled Abegrin, a humanized monoclonal antibody against integrin alpha v beta 3. Cancer Res 66:9673–9681PubMedCrossRefGoogle Scholar
  103. 103.
    Liu Z, Jia B, Zhao H, Chen X, Wang F (2010) Specific Targeting of human integrin alpha(v)beta (3) with (111)In-labeled Abegrin in nude mouse models. Mol Imaging Biol 13:112–120CrossRefGoogle Scholar
  104. 104.
    Kuwada SK (2007) Drug evaluation: volociximab, an angiogenesis-inhibiting chimeric monoclonal antibody. Curr Opin Mol Ther 9:92–98PubMedGoogle Scholar
  105. 105.
    Ricart AD, Tolcher AW, Liu G, Holen K, Schwartz G, Albertini M, Weiss G, Yazji S, Ng C, Wilding G (2008) Volociximab, a chimeric monoclonal antibody that specifically binds alpha5beta1 integrin: a phase I, pharmacokinetic, and biological correlative study. Clin Cancer Res 14:7924–7929PubMedCrossRefGoogle Scholar
  106. 106.
    Chen Q, Manning CD, Millar H, McCabe FL, Ferrante C, Sharp C, Shahied-Arruda L, Doshi P, Nakada MT, Anderson GM (2008) CNTO 95, a fully human anti alphav integrin antibody, inhibits cell signaling, migration, invasion, and spontaneous metastasis of human breast cancer cells. Clin Exp Metastasis 25:139–148PubMedCrossRefGoogle Scholar
  107. 107.
    Ning S, Nemeth JA, Hanson RL, Forsythe K, Knox SJ (2008) Anti-integrin monoclonal antibody CNTO 95 enhances the therapeutic efficacy of fractionated radiation therapy in vivo. Mol Cancer Ther 7:1569–1578PubMedCrossRefGoogle Scholar
  108. 108.
    Burke PA, DeNardo SJ, Miers LA, Lamborn KR, Matzku S, DeNardo GL (2002) Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res 62:4263–4272PubMedGoogle Scholar
  109. 109.
    Eskens FA, Dumez H, Hoekstra R, Perschl A, Brindley C, Bottcher S, Wynendaele W, Drevs J, Verweij J, van Oosterom AT (2003) Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer 39:917–926PubMedCrossRefGoogle Scholar
  110. 110.
    Albert JM, Cao C, Geng L, Leavitt L, Hallahan DE, Lu B (2006) Integrin alpha v beta 3 antagonist Cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int J Radiat Oncol Biol Phys 65:1536–1543PubMedCrossRefGoogle Scholar
  111. 111.
    MacDonald TJ, Stewart CF, Kocak M, Goldman S, Ellenbogen RG, Phillips P, Lafond D, Poussaint TY, Kieran MW, Boyett JM, Kun LE (2008) Phase I clinical trial of cilengitide in children with refractory brain tumors: Pediatric Brain Tumor Consortium Study PBTC-012. J Clin Oncol 26:919–924PubMedCrossRefGoogle Scholar
  112. 112.
    Bradley DA, Daignault S, Ryan CJ, Dipaola RS, Smith DC, Small E, Gross ME, Stein MN, Chen A, Hussain M (2010) Cilengitide (EMD 121974, NSC 707544) in asymptomatic metastatic castration resistant prostate cancer patients: a randomized phase II trial by the prostate cancer clinical trials consortium. Investig New DrugsGoogle Scholar
  113. 113.
    Khalili P, Arakelian A, Chen G, Plunkett ML, Beck I, Parry GC, Donate F, Shaw DE, Mazar AP, Rabbani SA (2006) A non-RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo. Mol Cancer Ther 5:2271–2280PubMedCrossRefGoogle Scholar
  114. 114.
    Donate F, Parry GC, Shaked Y, Hensley H, Guan X, Beck I, Tel-Tsur Z, Plunkett ML, Manuia M, Shaw DE, Kerbel RS, Mazar AP (2008) Pharmacology of the novel antiangiogenic peptide ATN-161 (Ac-PHSCN-NH2): observation of a U-shaped dose-response curve in several preclinical models of angiogenesis and tumor growth. Clin Cancer Res 14:2137–2144PubMedCrossRefGoogle Scholar
  115. 115.
    Coleman PJ, Brashear KM, Askew BC, Hutchinson JH, McVean CA, Duong le T, Feuston BP, Fernandez-Metzler C, Gentile MA, Hartman GD, Kimmel DB, Leu CT, Lipfert L, Merkle K, Pennypacker B, Prueksaritanont T, Rodan GA, Wesolowski GA, Rodan SB, Duggan ME (2004) Nonpeptide alphavbeta3 antagonists. Part 11: discovery and preclinical evaluation of potent alphavbeta3 antagonists for the prevention and treatment of osteoporosis. J Med Chem 47:4829–4837PubMedCrossRefGoogle Scholar
  116. 116.
    O’Hanlon DM, Fitzsimons H, Lynch J, Tormey S, Malone C, Given HF (2002) Soluble adhesion molecules (E-selectin, ICAM-1 and VCAM-1) in breast carcinoma. Eur J Cancer 38:2252–2257PubMedCrossRefGoogle Scholar
  117. 117.
    Schroder C, Schumacher U, Fogel M, Feuerhake F, Muller V, Wirtz RM, Altevogt P, Krenkel S, Janicke F, Milde-Langosch K (2009) Expression and prognostic value of L1-CAM in breast cancer. Oncol Rep 22:1109–1117PubMedGoogle Scholar
  118. 118.
    Osta WA, Chen Y, Mikhitarian K, Mitas M, Salem M, Hannun YA, Cole DJ, Gillanders WE (2004) EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res 64:5818–5824PubMedCrossRefGoogle Scholar
  119. 119.
    Cimino A, Halushka M, Illei P, Wu X, Sukumar S, Argani P (2009) Epithelial cell adhesion molecule (EpCAM) is overexpressed in breast cancer metastases. Breast Cancer Res Treat 123(3):701–708PubMedGoogle Scholar
  120. 120.
    Spizzo G, Went P, Dirnhofer S, Obrist P, Simon R, Spichtin H, Maurer R, Metzger U, von Castelberg B, Bart R, Stopatschinskaya S, Kochli OR, Haas P, Mross F, Zuber M, Dietrich H, Bischoff S, Mirlacher M, Sauter G, Gastl G (2004) High Ep-CAM expression is associated with poor prognosis in node-positive breast cancer. Breast Cancer Res Treat 86:207–213PubMedCrossRefGoogle Scholar
  121. 121.
    Silva HC, Garcao F, Coutinho EC, De Oliveira CF, Regateiro FJ (2006) Soluble VCAM-1 and E-selectin in breast cancer: relationship with staging and with the detection of circulating cancer cells. Neoplasma 53:538–543PubMedGoogle Scholar
  122. 122.
    Uehara M, Kinoshita T, Hojo T, Akashi-Tanaka S, Iwamoto E, Fukutomi T (2008) Long-term prognostic study of carcinoembryonic antigen (CEA) and carbohydrate antigen 15-3 (CA 15-3) in breast cancer. Int J Clin Oncol 13:447–451PubMedCrossRefGoogle Scholar
  123. 123.
    Shapiro L, Kwong PD, Fannon AM, Colman DR, Hendrickson WA (1995) Considerations on the Folding Topology and Evolutionary Origin of Cadherin Domains. Proc Natl Acad Sci USA 92:6793–6797PubMedCrossRefGoogle Scholar
  124. 124.
    Perez JJ (2011) Is the folding topology of a protein related to its amino acid occurrence? J Biomol Struct Dyn 28:657–659PubMedGoogle Scholar
  125. 125.
    Shen Q, Rahn JJ, Zhang J, Gunasekera N, Sun X, Shaw AR, Hendzel MJ, Hoffman P, Bernier A, Hugh JC (2008) MUC1 initiates Src-CrkL-Rac1/Cdc42-mediated actin cytoskeletal protrusive motility after ligating intercellular adhesion molecule-1. Mol Cancer Res 6:555–567PubMedCrossRefGoogle Scholar
  126. 126.
    Rahn JJ, Shen Q, Mah BK, Hugh JC (2004) MUC1 initiates a calcium signal after ligation by intercellular adhesion molecule-1. J Biol Chem 279:29386–29390PubMedCrossRefGoogle Scholar
  127. 127.
    Rahn JJ, Chow JW, Horne GJ, Mah BK, Emerman JT, Hoffman P, Hugh JC (2005) MUC1 mediates transendothelial migration in vitro by ligating endothelial cell ICAM-1. Clin Exp Metastasis 22:475–483PubMedCrossRefGoogle Scholar
  128. 128.
    Thompson PW, Randi AM, Ridley AJ (2002) Intercellular adhesion molecule (ICAM)-1, but not ICAM-2, activates RhoA and stimulates c-fos and rhoA transcription in endothelial cells. J Immunol 169:1007–1013PubMedGoogle Scholar
  129. 129.
    Kawai Y, Kaidoh M, Ohhashi T (2008) MDA-MB-231 produces ATP-mediated ICAM-1-dependent facilitation of the attachment of carcinoma cells to human lymphatic endothelial cells. Am J Physiol Cell Physiol 295:C1123–C1132PubMedCrossRefGoogle Scholar
  130. 130.
    Kawai Y, Kaidoh M, Yokoyama Y, Sano K, Ohhashi T (2009) Chemokine CCL2 facilitates ICAM-1-mediated interactions of cancer cells and lymphatic endothelial cells in sentinel lymph nodes. Cancer Sci 100:419–428PubMedCrossRefGoogle Scholar
  131. 131.
    Schmidt S, Friedl P (2010) Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res 339:83–92PubMedCrossRefGoogle Scholar
  132. 132.
    Afify A, McNiel MA, Braggin J, Bailey H, Paulino AF (2008) Expression of CD44s, CD44v6, and hyaluronan across the spectrum of normal-hyperplasia-carcinoma in breast. Appl Immunohistochem Mol Morphol 16:121–127PubMedCrossRefGoogle Scholar
  133. 133.
    Rys J, Kruczak A, Lackowska B, Jaszcz-Gruchala A, Brandys A, Stelmach A, Reinfuss M (2003) The role of CD44v3 expression in female breast carcinomas. Pol J Pathol 54:243–247PubMedGoogle Scholar
  134. 134.
    Afify A, Purnell P, Nguyen L (2009) Role of CD44s and CD44v6 on human breast cancer cell adhesion, migration, and invasion. Exp Mol Pathol 86:95–100PubMedCrossRefGoogle Scholar
  135. 135.
    Wang HS, Hung Y, Su CH, Peng ST, Guo YJ, Lai MC, Liu CY, Hsu JW (2005) CD44 cross-linking induces integrin-mediated adhesion and transendothelial migration in breast cancer cell line by up-regulation of LFA-1 (alpha L beta2) and VLA-4 (alpha4beta1). Exp Cell Res 304:116–126PubMedCrossRefGoogle Scholar
  136. 136.
    Peng ST, Su CH, Kuo CC, Shaw CF, Wang HS (2007) CD44 crosslinking-mediated matrix metalloproteinase-9 relocation in breast tumor cells leads to enhanced metastasis. Int J Oncol 31:1119–1126PubMedGoogle Scholar
  137. 137.
    Thanakit V, Sampatanukul P, Ruangvejvorachai P, Keelawat S (2005) The association of co-expression of CD44v4/MMP-9 with different nodal status in high-grade breast carcinoma patients. J Med Assoc Thail 88(Suppl 4):S30–S35Google Scholar
  138. 138.
    Mullamitha SA, Ton NC, Parker GJ, Jackson A, Julyan PJ, Roberts C, Buonaccorsi GA, Watson Y, Davies K, Cheung S, Hope L, Valle JW, Radford JA, Lawrance J, Saunders MP, Munteanu MC, Nakada MT, Nemeth JA, Davis HM, Jiao Q, Prabhakar U, Lang Z, Corringham RE, Beckman RA, Jayson GC (2007) Phase I evaluation of a fully human anti-alphav integrin monoclonal antibody (CNTO 95) in patients with advanced solid tumors. Clin Cancer Res 13:2128–2135PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalTianjinChina
  2. 2.Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of EducationTianjin Medical University Cancer Institute and HospitalTianjinChina

Personalised recommendations