Breast Cancer Research and Treatment

, Volume 131, Issue 3, pp 809–818 | Cite as

Deoxycytidine kinase is overexpressed in poor outcome breast cancer and determines responsiveness to nucleoside analogs

  • Ernst-Jan Geutjes
  • Sun Tian
  • Paul Roepman
  • René Bernards
Preclinical Study

Abstract

Only a minority of breast cancer patients responds to chemotherapy and we lack predictive biomarkers that help to select a patient-tailored therapy that takes into consideration the molecular heterogeneity of the cancer type. Responsiveness to the clinically important nucleoside analogs gemcitabine and decitabine may be critically determined by Deoxycytidine kinase (DCK) expression as this enzyme is required to convert the inactive prodrugs into their pharmacologically active forms. Here, we examined whether DCK is differentially expressed in breast cancer and evaluated whether DCK expression levels control responsiveness to these nucleoside analogs in vitro by experimentally modulating DCK expression levels. We examined DCK expression in gene expression data sets of breast tumors including the series of 295 consecutive patients that have been classified into low or high risk for recurrence using the MammaPrint 70 gene profile. We found that DCK is expressed at higher levels in patients having poor clinical outcome as judged by the MammaPrint assay. As such, patients that have a poor prognosis may thus be susceptible to treatment with nucleoside analogs. In support of this, we found a causal relationship between DCK levels and sensitivity to these nucleoside analogs in breast cancer cell lines. The data indicate that breast cancers that are at high risk of recurrence express higher levels of DCK, which we find to be strongly correlated to a favorable response to nucleoside analogs. The data suggest that DCK expression in breast cancer could be exploited to select patients that are likely to respond to treatment with nucleoside analogs.

Keywords

DCK Gemcitabine Nucleoside analogs Breast cancer Biomarker 

Notes

Acknowledgments

We thank Lucas Bruurs for technical assistance. The work of the authors was supported by the SPINOZA grant from the Netherlands Organization for Scientific Research (NWO).

Conflict of Interest

RB and ST are employees of Agendia BV, the company that markets the MammaPrint prognosis test for breast cancer.

References

  1. 1.
    WHO (2009) Fact sheet 297Google Scholar
  2. 2.
    TG EBC (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–1717. doi: 10.1016/S0140-6736(05)66544-0 CrossRefGoogle Scholar
  3. 3.
    Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans E, Godwin J, Gray R, Hicks C, James S, MacKinnon E, McGale P, McHugh T, Peto R, Taylor C, Wang Y (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366(9503):2087–2106. doi: 10.1016/S0140-6736(05)67887-7 PubMedGoogle Scholar
  4. 4.
    Podsypanina K, Du YC, Jechlinger M, Beverly LJ, Hambardzumyan D, Varmus H (2008) Seeding and propagation of untransformed mouse mammary cells in the lung. Science 321(5897):1841–1844. doi: 10.1126/science.1161621 PubMedCrossRefGoogle Scholar
  5. 5.
    Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, Forni G, Eils R, Fehm T, Riethmuller G, Klein CA (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13(1):58–68. doi: 10.1016/j.ccr.2007.12.003 PubMedCrossRefGoogle Scholar
  6. 6.
    Bernards R (2010) It’s diagnostics, stupid. Cell 141(1):13–17. doi: 10.1016/j.cell.2010.03.018 PubMedCrossRefGoogle Scholar
  7. 7.
    Tan DS, Gerlinger M, Teh BT, Swanton C (2010) Anti-cancer drug resistance: Understanding the mechanisms through the use of integrative genomics and functional RNA interference. Eur J Cancer. doi:  10.1016/j.ejca.2010.03.019
  8. 8.
    Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M, Beijersbergen RL, Mills GB, van de Vijver MJ, Bernards R (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12(4):395–402. doi: 10.1016/j.ccr.2007.08.030 PubMedCrossRefGoogle Scholar
  9. 9.
    Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921. doi: 10.1038/nature03445 PubMedCrossRefGoogle Scholar
  10. 10.
    Sawyers CL (2008) The cancer biomarker problem. Nature 452(7187):548–552. doi: 10.1038/nature06913 PubMedCrossRefGoogle Scholar
  11. 11.
    van t’Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536. doi: 10.1038/415530a CrossRefGoogle Scholar
  12. 12.
    van de Vijver MJ, He YD, van t’Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009. doi: 10.1056/NEJMoa021967 PubMedCrossRefGoogle Scholar
  13. 13.
    Blackstock AW, Lightfoot H, Case LD, Tepper JE, Mukherji SK, Mitchell BS, Swarts SG, Hess SM (2001) Tumor uptake and elimination of 2′,2′-difluoro-2′-deoxycytidine (gemcitabine) after deoxycytidine kinase gene transfer: correlation with in vivo tumor response. Clin Cancer Res 7(10):3263–3268PubMedGoogle Scholar
  14. 14.
    Hapke DM, Stegmann AP, Mitchell BS (1996) Retroviral transfer of deoxycytidine kinase into tumor cell lines enhances nucleoside toxicity. Cancer Res 56(10):2343–2347PubMedGoogle Scholar
  15. 15.
    Qin T, Jelinek J, Si J, Shu J, Issa JP (2009) Mechanisms of resistance to 5-aza-2′-deoxycytidine in human cancer cell lines. Blood 113(3):659–667. doi: 10.1182/blood-2008-02-140038 PubMedCrossRefGoogle Scholar
  16. 16.
    Beausejour CM, Gagnon J, Primeau M, Momparler RL (2002) Cytotoxic activity of 2′,2′-difluorodeoxycytidine, 5-aza-2′-deoxycytidine and cytosine arabinoside in cells transduced with deoxycytidine kinase gene. Biochem Biophys Res Commun 293(5):1478–1484. doi: 10.1016/S0006-291X(02)00413-8 PubMedCrossRefGoogle Scholar
  17. 17.
    Stegmann AP, Honders MW, Hagemeijer A, Hoebee B, Willemze R, Landegent JE (1995) In vitro-induced resistance to the deoxycytidine analogues cytarabine (AraC) and 5-aza-2′-deoxycytidine (DAC) in a rat model for acute myeloid leukemia is mediated by mutations in the deoxycytidine kinase (DCK) gene. Ann Hematol 71(1):41–47PubMedCrossRefGoogle Scholar
  18. 18.
    Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296(5567):550–553. doi: 10.1126/science.1068999 PubMedCrossRefGoogle Scholar
  19. 19.
    Glas AM, Floore A, Delahaye LJ, Witteveen AT, Pover RC, Bakx N, Lahti-Domenici JS, Bruinsma TJ, Warmoes MO, Bernards R, Wessels LF, Van’t Veer LJ (2006) Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics 7:278. doi: 10.1186/1471-2164-7-278 PubMedCrossRefGoogle Scholar
  20. 20.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 23(36):9067–9072. doi: 10.1200/JCO.2004.01.0454 PubMedCrossRefGoogle Scholar
  21. 21.
    Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6(1):1–6PubMedGoogle Scholar
  22. 22.
    Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, Liao X, Iglehart JD, Livingston DM, Ganesan S (2006) X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9(2):121–132. doi: 10.1016/j.ccr.2006.01.013 PubMedCrossRefGoogle Scholar
  23. 23.
    van’t Veer LJ, Bernards R (2008) Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature 452(7187):564–570. doi: 10.1038/nature06915 CrossRefGoogle Scholar
  24. 24.
    Stegmann AP, Honders MW, Willemze R, Landegent JE (1995) De novo induced mutations in the deoxycytidine kinase (DCK) gene in rat leukemic clonal cell lines confer resistance to cytarabine (AraC) and 5-aza-2′-deoxycytidine (DAC). Leukemia 9(6):1032–1038PubMedGoogle Scholar
  25. 25.
    Ohhashi S, Ohuchida K, Mizumoto K, Fujita H, Egami T, Yu J, Toma H, Sadatomi S, Nagai E, Tanaka M (2008) Down-regulation of deoxycytidine kinase enhances acquired resistance to gemcitabine in pancreatic cancer. Anticancer Res 28(4B):2205–2212PubMedGoogle Scholar
  26. 26.
    Galmarini CM, Clarke ML, Jordheim L, Santos CL, Cros E, Mackey JR, Dumontet C (2004) Resistance to gemcitabine in a human follicular lymphoma cell line is due to partial deletion of the deoxycytidine kinase gene. BMC Pharmacol 4:8. doi: 10.1186/1471-2210-4-8 PubMedCrossRefGoogle Scholar
  27. 27.
    Stegmann AP, Honders WH, Willemze R, Ruiz van Haperen VW, Landegent JE (1995) Transfection of wild-type deoxycytidine kinase (dck) cDNA into an AraC- and DAC-resistant rat leukemic cell line of clonal origin fully restores drug sensitivity. Blood 85(5):1188–1194PubMedGoogle Scholar
  28. 28.
    Rejiba S, Bigand C, Parmentier C, Hajri A (2009) Gemcitabine-based chemogene therapy for pancreatic cancer using Ad-dCK:UMK GDEPT and TS/RR siRNA strategies. Neoplasia 11(7):637–650PubMedGoogle Scholar
  29. 29.
    Szatmari T, Huszty G, Desaknai S, Spasokoukotskaja T, Sasvari-Szekely M, Staub M, Esik O, Safrany G, Lumniczky K (2008) Adenoviral vector transduction of the human deoxycytidine kinase gene enhances the cytotoxic and radiosensitizing effect of gemcitabine on experimental gliomas. Cancer Gene Ther 15(3):154–164. doi: 10.1038/sj.cgt.7701115 PubMedCrossRefGoogle Scholar
  30. 30.
    Sebastiani V, Ricci F, Rubio-Viqueira B, Kulesza P, Yeo CJ, Hidalgo M, Klein A, Laheru D, Iacobuzio-Donahue CA (2006) Immunohistochemical and genetic evaluation of deoxycytidine kinase in pancreatic cancer: relationship to molecular mechanisms of gemcitabine resistance and survival. Clin Cancer Res 12(8):2492–2497. doi: 10.1158/1078-0432.CCR-05-2655 PubMedCrossRefGoogle Scholar
  31. 31.
    Stal O, Dufmats M, Hatschek T, Carstensen J, Klintenberg C, Rutqvist LE, Skoog L, Sullivan S, Wingren S, Nordenskjold B (1993) S-phase fraction is a prognostic factor in stage I breast carcinoma. J Clin Oncol 11(9):1717–1722PubMedGoogle Scholar
  32. 32.
    Marechal R, Mackey JR, Lai R, Demetter P, Peeters M, Polus M, Cass CE, Salmon I, Deviere J, Van Laethem JL Deoxycitidine kinase is associated with prolonged survival after adjuvant gemcitabine for resected pancreatic adenocarcinoma. Cancer. doi:  10.1002/cncr.25303
  33. 33.
    Fujita H, Ohuchida K, Mizumoto K, Itaba S, Ito T, Nakata K, Yu J, Kayashima T, Souzaki R, Tajiri T, Manabe T, Ohtsuka T, Tanaka M (2010) Gene expression levels as predictive markers of outcome in pancreatic cancer after gemcitabine-based adjuvant chemotherapy. Neoplasia 12(10):807–817PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Ernst-Jan Geutjes
    • 1
  • Sun Tian
    • 2
  • Paul Roepman
    • 2
  • René Bernards
    • 1
    • 2
  1. 1.Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics CenterThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  2. 2.Agendia BVAmsterdamThe Netherlands

Personalised recommendations