Advertisement

Breast Cancer Research and Treatment

, Volume 131, Issue 2, pp 425–436 | Cite as

The effect of mTOR inhibition alone or combined with MEK inhibitors on brain metastasis: an in vivo analysis in triple-negative breast cancer models

  • Hong Zhao
  • Kemi Cui
  • Fang Nie
  • Lulu Wang
  • Miriam B. Brandl
  • Guangxu Jin
  • Fuhai Li
  • Yong Mao
  • Zhong Xue
  • Angel Rodriguez
  • Jenny Chang
  • Stephen T. C. WongEmail author
Preclinical study

Abstract

mTOR inhibitor rapamycin and its analogs are lipophilic, demonstrate blood–brain barrier penetration, and have shown promising antitumor effects in several types of refractory tumors. We thus try to explore the therapeutic effects of mTOR inhibitors on brain metastasis models. We examined the effects of different dose of mTOR inhibitors (rapamycin, Temsirolimus-CCI-779) on cell invasion in two brain metastatic breast cancer cell lines (MDA-MB231-BR and CN34-BrM2). Antibody microarray and immunoblotting were applied to detect signaling pathways underlying the dose differential drug effects. The in vivo effects of single drug (CCI-779), and drug combination of CCI-779 with SL327 (a brain penetrant MEK inhibitor) to eliminate the unfavorable activation of MAPK pathway were evaluated in MDA-MB231-BR brain metastases xenograft mice. The two mTOR inhibitors, rapamycin and CCI-779, inhibited the invasion of brain metastatic cells only at a moderate concentration level, which was lost at higher concentrations secondary to activation of the MAPK signaling pathway. Pharmacological inhibition of ERK1/2 by PD98059 and SL327 restored the anti-invasion effects of mTOR inhibition in vitro. In vivo, a significant decrease was noted in the average number of micro and large metastatic lesions as well as the whole brain GFP expression in the CCI-779 1 mg/kg/day treated group compared with that in the vehicle group (P < 0.05). However, 10 mg/kg CCI-779 treatment did not show significant anti-metastasis effect on the animal model. High-dose CCI-779 eliciting the ERK MAPK activation in the brain metastatic lesion was corroborated. Combined with the brain penetrant MEK inhibitor SL327, high-dose CCI-779 significantly reduces the brain metastasis, and the combination treatment prohibited perivascular invasion of tumor cells and inhibits tumor angiogenesis in vivo. This study provides evidence on the potential value of CCI-779 as well as CCI-779 + SL327 in prohibiting breast cancer brain metastasis.

Keywords

CCI-779 SL327 Brain metastasis Triple-negative breast cancer 

Notes

Acknowledgments

This research is funded by NIH U54 CA149196, NIH R01 CA139976, NIH R01 CA121225, and John S Dunn Foundation grant to STCW.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10549_2011_1420_MOESM1_ESM.docx (389 kb)
Supplementary material 1 (DOCX 389 kb)

References

  1. 1.
    Cleator S, Heller W, Coombes RC (2007) Triple-negative breast cancer: therapeutic options. Lancet Oncol 8:235–244PubMedCrossRefGoogle Scholar
  2. 2.
    Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, Nielsen TO, Gelmon K (2010) Metastatic behavior of breast cancer subtypes. J Clin Oncol 28:3271–3277PubMedCrossRefGoogle Scholar
  3. 3.
    Fulford LG, Reis-Filho JS, Ryder K, Jones C, Gillett CE, Hanby A, Easton D, Lakhani SR (2007) Basal-like grade III invasive ductal carcinoma of the breast: patterns of metastasis and long-term survival. Breast Cancer Res 9:R4PubMedCrossRefGoogle Scholar
  4. 4.
    Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu J, Klijn JG, Foekens JA, Martens JW (2008) Subtypes of breast cancer show preferential site of relapse. Cancer Res 68:3108–3114PubMedCrossRefGoogle Scholar
  5. 5.
    Lin NU, Claus E, Sohl J, Razzak AR, Arnaout A, Winer EP (2008) Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer: high incidence of central nervous system metastases. CancerGoogle Scholar
  6. 6.
    Neman J, Somlo G, Jandial R (2010) Classification of genomic changes in breast cancer brain metastasis. Neurosurgery 67:N18–N19PubMedCrossRefGoogle Scholar
  7. 7.
    Chen EI, Hewel J, Krueger JS, Tiraby C, Weber MR, Kralli A, Becker K, Yates JR 3rd, Felding-Habermann B (2007) Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res 67:1472–1486PubMedCrossRefGoogle Scholar
  8. 8.
    Giese A, Bjerkvig R, Berens ME, Westphal M (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21:1624–1636PubMedCrossRefGoogle Scholar
  9. 9.
    Lefranc F, Brotchi J, Kiss R (2005) Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol 23:2411–2422PubMedCrossRefGoogle Scholar
  10. 10.
    Shapira M, Kakiashvili E, Rosenberg T, Hershko DD (2006) The mTOR inhibitor rapamycin down-regulates the expression of the ubiquitin ligase subunit Skp2 in breast cancer cells. Breast Cancer Res 8:R46PubMedCrossRefGoogle Scholar
  11. 11.
    Chang SB, Miron P, Miron A, Iglehart JD (2007) Rapamycin inhibits proliferation of estrogen-receptor-positive breast cancer cells. J Surg Res 138:37–44PubMedCrossRefGoogle Scholar
  12. 12.
    Kwon CH, Zhu X, Zhang J, Baker SJ (2003) mTor is required for hypertrophy of Pten-deficient neuronal soma in vivo. Proc Natl Acad Sci USA 100:12923–12928PubMedCrossRefGoogle Scholar
  13. 13.
    Huang S, Bjornsti MA, Houghton PJ (2003) Rapamycins: mechanism of action and cellular resistance. Cancer Biol Ther 2:222–232PubMedGoogle Scholar
  14. 14.
    Supko JG, Malspeis L (1994) Dose-dependent pharmacokinetics of rapamycin-28-N, N-dimethylglycinate in the mouse. Cancer Chemother Pharmacol 33:325–330PubMedCrossRefGoogle Scholar
  15. 15.
    Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595PubMedCrossRefGoogle Scholar
  16. 16.
    Zeng Q, Yang Z, Gao YJ, Yuan H, Cui K, Shi Y, Wang H, Huang X, Wong ST, Wang Y et al (2010) Treating triple-negative breast cancer by a combination of rapamycin and cyclophosphamide: an in vivo bioluminescence imaging study. Eur J Cancer 46:1132–1143PubMedCrossRefGoogle Scholar
  17. 17.
    Chan S, Scheulen ME, Johnston S, Mross K, Cardoso F, Dittrich C, Eiermann W, Hess D, Morant R, Semiglazov V et al (2005) Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol 23:5314–5322PubMedCrossRefGoogle Scholar
  18. 18.
    Atkins MB, Hidalgo M, Stadler WM, Logan TF, Dutcher JP, Hudes GR, Park Y, Liou SH, Marshall B, Boni JP et al (2004) Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol 22:909–918PubMedCrossRefGoogle Scholar
  19. 19.
    Legrier ME, Yang CP, Yan HG, Lopez-Barcons L, Keller SM, Perez-Soler R, Horwitz SB, McDaid HM (2007) Targeting protein translation in human non small cell lung cancer via combined MEK and mammalian target of rapamycin suppression. Cancer Res 67:11300–11308PubMedCrossRefGoogle Scholar
  20. 20.
    Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC et al (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3 K-dependent feedback loop in human cancer. J Clin Investig 118:3065–3074PubMedGoogle Scholar
  21. 21.
    Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R (2001) A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16:1486–1495PubMedCrossRefGoogle Scholar
  22. 22.
    Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, Gerald WL, Foekens JA et al (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009PubMedCrossRefGoogle Scholar
  23. 23.
    Smith L, Watson MB, O’Kane SL, Drew PJ, Lind MJ, Cawkwell L (2006) The analysis of doxorubicin resistance in human breast cancer cells using antibody microarrays. Mol Cancer Ther 5:2115–2120PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang B, Kirov S, Snoddy J (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33:W741–W748PubMedCrossRefGoogle Scholar
  25. 25.
    Gril B, Palmieri D, Bronder JL, Herring JM, Vega-Valle E, Feigenbaum L, Liewehr DJ, Steinberg SM, Merino MJ, Rubin SD et al (2008) Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J Natl Cancer Inst 100:1092–1103PubMedCrossRefGoogle Scholar
  26. 26.
    Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527PubMedCrossRefGoogle Scholar
  27. 27.
    Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549PubMedCrossRefGoogle Scholar
  28. 28.
    Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massague J (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524PubMedCrossRefGoogle Scholar
  29. 29.
    Weil RJ, Palmieri DC, Bronder JL, Stark AM, Steeg PS (2005) Breast cancer metastasis to the central nervous system. Am J Pathol 167:913–920PubMedCrossRefGoogle Scholar
  30. 30.
    Sehgal SN, Baker H, Vezina C (1975) Rapamycin (AY-22, 989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot 28:727–732PubMedGoogle Scholar
  31. 31.
    Chang SM, Kuhn J, Wen P, Greenberg H, Schiff D, Conrad C, Fink K, Robins HI, Cloughesy T, De Angelis L et al (2004) Phase I/pharmacokinetic study of CCI-779 in patients with recurrent malignant glioma on enzyme-inducing antiepileptic drugs. Investig New Drugs 22:427–435CrossRefGoogle Scholar
  32. 32.
    Cloughesy TF, Yoshimoto K, Nghiemphu P, Brown K, Dang J, Zhu S, Hsueh T, Chen Y, Wang W, Youngkin D et al (2008) Antitumor activity of rapamycin in a phase I trial for patients with recurrent Pten-deficient glioblastoma. PLoS medicine 5:e8PubMedCrossRefGoogle Scholar
  33. 33.
    Geoerger B, Kerr K, Tang CB, Fung KM, Powell B, Sutton LN, Phillips PC, Janss AJ (2001) Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res 61:1527–1532PubMedGoogle Scholar
  34. 34.
    Palmieri D, Smith QR, Lockman PR, Bronder J, Gril B, Chambers AF, Weil RJ, Steeg PS (2006) Brain metastases of breast cancer. Breast disease 26:139–147PubMedGoogle Scholar
  35. 35.
    Palmieri D, Lockman PR, Thomas FC, Hua E, Herring J, Hargrave E, Johnson M, Flores N, Qian Y, Vega-Valle E et al (2009) Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clin Cancer Res 15:6148–6157PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M, Foekens JA, Massague J (2009) Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16:67–78PubMedCrossRefGoogle Scholar
  37. 37.
    Rajalingam K, Wunder C, Brinkmann V, Churin Y, Hekman M, Sievers C, Rapp UR, Rudel T (2005) Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration. Nat Cell Biol 7:837–843PubMedCrossRefGoogle Scholar
  38. 38.
    Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H, Sun Y, Ouyang X, Gerald WL, Cordon-Cardo C et al (2008) Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Investig 118:3051–3064PubMedGoogle Scholar
  39. 39.
    O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL et al (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66:1500–1508PubMedCrossRefGoogle Scholar
  40. 40.
    Tabernero J, Rojo F, Calvo E, Burris H, Judson I, Hazell K, Martinelli E, Ramon y Cajal S, Jones S, Vidal L et al (2008) Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 26:1603–1610PubMedCrossRefGoogle Scholar
  41. 41.
    Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol cell 22:159–168PubMedCrossRefGoogle Scholar
  42. 42.
    Del Bufalo D, Ciuffreda L, Trisciuoglio D, Desideri M, Cognetti F, Zupi G, Milella M (2006) Antiangiogenic potential of the mammalian target of rapamycin inhibitor temsirolimus. Cancer Res 66:5549–5554PubMedCrossRefGoogle Scholar
  43. 43.
    Poulalhon N, Farge D, Roos N, Tacheau C, Neuzillet C, Michel L, Mauviel A, Verrecchia F (2006) Modulation of collagen and MMP-1 gene expression in fibroblasts by the immunosuppressive drug rapamycin. A direct role as an antifibrotic agent? J Biol Chem 281:33045–33052PubMedCrossRefGoogle Scholar
  44. 44.
    Kahan BD (2004) Sirolimus: a ten-year perspective. Transpl Proc 36:71–75CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Hong Zhao
    • 1
  • Kemi Cui
    • 1
  • Fang Nie
    • 1
  • Lulu Wang
    • 1
  • Miriam B. Brandl
    • 1
  • Guangxu Jin
    • 1
  • Fuhai Li
    • 1
  • Yong Mao
    • 1
  • Zhong Xue
    • 1
  • Angel Rodriguez
    • 2
  • Jenny Chang
    • 2
  • Stephen T. C. Wong
    • 1
    Email author
  1. 1.Departments of Radiology and Pathology, Medical Systems Biology Laboratory, Bioengineering and Bioinformatics Program, The Methodist Hospital Research InstituteWeill Medical College, Cornell UniversityHoustonUSA
  2. 2.Methodist Cancer Center, The Methodist HospitalWeill Medical College, Cornell UniversityHoustonUSA

Personalised recommendations