Breast Cancer Research and Treatment

, Volume 130, Issue 3, pp 773–781 | Cite as

Elimination of the chemotherapy resistant subpopulation of 4T1 mouse breast cancer by haploidentical NK cells cures the vast majority of mice

  • Peter W. H. Frings
  • Catharina H. M. J. Van Elssen
  • Lotte Wieten
  • Catarina Matos
  • Pierre S. J. G. Hupperets
  • Harry C. Schouten
  • Gerard M. J. Bos
  • Michel van GelderEmail author
Preclinical study


Metastatic breast cancer is currently incurable despite initial responsiveness, assumingly due to the presence of chemoresistant subpopulations that can be characterized as label retaining cells (LRC). In the 4T1 mouse breast cancer model, we previously achieved cure after Cyclophosphamide and Total Body Irradiation (CY + TBI) followed by haploidentical bone marrow and spleen transplantation (BMSPLT). CY + TBI without transplantation induced only transient impaired tumor growth indicating a critical role of donor immune cells. As it remained unknown if the 4T1 model resembles human disease with respect to the presence of subpopulations of chemoresistant LRC, we now demonstrate this is indeed the case. Chemoresistance of 4T1 LRC was demonstrated by in vitro co-incubation of fluorescently labeled 4T1 cells in limiting dilution with cyclophosphamide, doxorubicin or cisplatinum, after which only LRC containing colonies remained. LRC also remain in vivo after treatment with CY + TBI. Succeeding experiments set up to identify the haploidentical effector cell responsible for cure and, therefore, for the elimination of chemoresistant LRC designate donor NK cells crucial for the anti-tumor effect. NK cell depletion of the haploidentical graft fully abrogated the anti-tumor effect. Increased disease-free survival retained after transplantation of haploidentical bone marrow and NK cell-enriched spleen cell grafts, even in the absence of donor T-cells or of donor bone marrow. Tumor growth analysis indicates the anti-tumor effect being immediate (days). Based on these data, it is worthwhile to explore alloreactive adoptive NK cell therapy as consolidation for patients with metastasized breast cancer.


Breast cancer 4T1 Chemoresistant Label retaining cell Haploidentical NK cell 



We express our gratitude to Dr. Wilfred T. Germeraad and Dr. Joris Vanderlocht for fruitful critical discussions, and Ans Houben for performing micro-PET imaging. This research was funded by the Stichting Vanderes, Breda, The Netherlands. This work was supported by the Vanderes Foundation, grant number 191.

Conflict of interest


Supplementary material

10549_2011_1355_MOESM1_ESM.doc (88 kb)
Supplementary material 1 (DOC 88 kb)


  1. 1.
    Nieto Y, Shpall EJ (2009) High-dose chemotherapy for high-risk primary and metastatic breast cancer: is another look warranted? Curr Opin Oncol 21(2):150–157PubMedCrossRefGoogle Scholar
  2. 2.
    Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev 5(4):275–284CrossRefGoogle Scholar
  3. 3.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. PNAS 100(7):3983–3988PubMedCrossRefGoogle Scholar
  4. 4.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567PubMedCrossRefGoogle Scholar
  5. 5.
    Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10(2):R25PubMedCrossRefGoogle Scholar
  6. 6.
    Cheung AM, Wan TS, Leung JC, Chan LY, Huang H, Kwong YL, Liang R, Leung AY (2007) Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia 21(7):1423–1430PubMedCrossRefGoogle Scholar
  7. 7.
    Ran D, Schubert M, Pietsch L, Taubert I, Wuchter P, Eckstein V, Bruckner T, Zoeller M, Ho AD (2009) Aldehyde dehydrogenase activity among primary leukemia cells is associated with stem cell features and correlates with adverse clinical outcomes. Exp Hematol 37(12):1423–1434PubMedCrossRefGoogle Scholar
  8. 8.
    Koreth J, Schlenk R, Kopecky KJ, Honda S, Sierra J, Djulbegovic BJ, Wadleigh M, DeAngelo DJ, Stone RM, Sakamaki H et al (2009) Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials. JAMA 301(22):2349–2361PubMedCrossRefGoogle Scholar
  9. 9.
    Cornelissen JJ, van Putten WL, Verdonck LF, Theobald M, Jacky E, Daenen SM, van Marwijk Kooy M, Wijermans P, Schouten H, Huijgens PC et al (2007) Results of a HOVON/SAKK donor versus no-donor analysis of myeloablative HLA-identical sibling stem cell transplantation in first remission acute myeloid leukemia in young and middle-aged adults: benefits for whom? Blood 109(9):3658–3666PubMedCrossRefGoogle Scholar
  10. 10.
    Suciu S, Mandelli F, de Witte T, Zittoun R, Gallo E, Labar B, De Rosa G, Belhabri A, Giustolisi R, Delarue R et al (2003) Allogeneic compared with autologous stem cell transplantation in the treatment of patients younger than 46 years with acute myeloid leukemia (AML) in first complete remission (CR1): an intention-to-treat analysis of the EORTC/GIMEMAAML-10 trial. Blood 102(4):1232–1240PubMedCrossRefGoogle Scholar
  11. 11.
    Ueno NT, Rizzo JD, Demirer T, Cheng YC, Hegenbart U, Zhang MJ, Bregni M, Carella A, Blaise D, Bashey A et al (2008) Allogeneic hematopoietic cell transplantation for metastatic breast cancer. Bone Marrow Transpl 41(6):537–545CrossRefGoogle Scholar
  12. 12.
    Ruggeri L, Mancusi A, Capanni M, Urbani E, Carotti A, Aloisi T, Stern M, Pende D, Perruccio K, Burchielli E et al (2007) Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood 110(1):433–440PubMedCrossRefGoogle Scholar
  13. 13.
    Stern M, Ruggeri L, Mancusi A, Bernardo ME, de Angelis C, Bucher C, Locatelli F, Aversa F, Velardi A (2008) Survival after T cell-depleted haploidentical stem cell transplantation is improved using the mother as donor. Blood 112(7):2990–2995PubMedCrossRefGoogle Scholar
  14. 14.
    Karre K, Ljunggren HG, Piontek G, Kiessling R (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319(6055):675–678PubMedCrossRefGoogle Scholar
  15. 15.
    Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562):2097–2100PubMedCrossRefGoogle Scholar
  16. 16.
    Vanclee A, van Gelder M, Schouten HC, Bos GM (2006) Graft-versus-tumor effects on murine mammary carcinoma in a model of nonmyeloablative haploidentical stem cell transplantation. Bone Marrow Transpl 37(11):1043–1049CrossRefGoogle Scholar
  17. 17.
    Krishnamurthy K, Wang G, Rokhfeld D, Bieberich E (2008) Deoxycholate promotes survival of breast cancer cells by reducing the level of pro-apoptotic ceramide. Breast Cancer Res 10(6):R106PubMedCrossRefGoogle Scholar
  18. 18.
    Dexter DL, Kowalski HM, Blazar BA, Fligiel Z, Vogel R, Heppner GH (1978) Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res 38(10):3174–3181PubMedGoogle Scholar
  19. 19.
    Efferth T, Konkimalla VB, Wang YF, Sauerbrey A, Meinhardt S, Zintl F, Mattern J, Volm M (2008) Prediction of broad spectrum resistance of tumors towards anticancer drugs. Clin Cancer Res 14(8):2405–2412PubMedCrossRefGoogle Scholar
  20. 20.
    Westerhuis G, Maas WG, Willemze R, Toes RE, Fibbe WE (2005) Long-term mixed chimerism after immunologic conditioning and MHC-mismatched stem-cell transplantation is dependent on NK-cell tolerance. Blood 106(6):2215–2220PubMedCrossRefGoogle Scholar
  21. 21.
    Vanclee A (2006) A new model of haploidentical stem cell transplantation as a cure for malignancies in mice. Produced by Datawyse, University Press Maastricht, ISBN 10: 90-5278-568-6 and ISBN 13: 978-90-5277-568-4Google Scholar
  22. 22.
    Vanclee A, Lutgens LC, Oving EB, Deutz NE, Gijbels MJ, Schouten HC, Bos GM (2005) Keratinocyte growth factor ameliorates acute graft-versus-host disease in a novel nonmyeloablative haploidentical transplantation model. Bone Marrow Transpl 36(10):907–915CrossRefGoogle Scholar
  23. 23.
    Elliott JM, Wahle JA, Yokoyama WM (2010) MHC class I-deficient natural killer cells acquire a licensed phenotype after transfer into an MHC class I-sufficient environment. J Exp Med 207(10):2073–2079PubMedCrossRefGoogle Scholar
  24. 24.
    Joncker NT, Shifrin N, Delebecque F, Raulet DH (2010) Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment. J Exp Med 207(10):2065–2072PubMedCrossRefGoogle Scholar
  25. 25.
    Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ et al (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105(8):3051–3057PubMedCrossRefGoogle Scholar
  26. 26.
    Prigozhina TB, Gurevitch O, Morecki S, Yakovlev E, Elkin G, Slavin S (2002) Nonmyeloablative allogeneic bone marrow transplantation as immunotherapy for hematologic malignancies and metastatic solid tumors in preclinical models. Exp Hematol 30(1):89–96PubMedCrossRefGoogle Scholar
  27. 27.
    Panigrahi S, Morecki S, Yacovlev E, Gelfand Y, Kassir J, Slavin S (2004) A novel approach for prevention of lethal GVHD by selective elimination of alloreactive donor lymphocytes prior to stem cell transplantation. Exp Hematol 32(8):756–764PubMedCrossRefGoogle Scholar
  28. 28.
    Fleskens AJ, Lalisang RI, Bos GM, van Gelder M, Jansen RL, Schouten HC (2010) HLA-matched allo-SCT after reduced intensity conditioning with fludarabine/CY in patients with metastatic breast cancer. Bone Marrow Transpl 45(3):464–467CrossRefGoogle Scholar
  29. 29.
    Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52:1399–1405PubMedGoogle Scholar
  30. 30.
    Danna EA, Sinha P, Gilbert M, Clements VK, Pulaski BA, Ostrand-Rosenberg S (2004) Surgical removal of primary tumor reverses tumor-induced immunosuppression despite the presence of metastatic disease. Cancer Res 64(6):2205–2211PubMedCrossRefGoogle Scholar
  31. 31.
    Morecki S, Yacovlev E, Diab A, Slavin S (1998) Allogeneic cell therapy for a murine mammary carcinoma. Cancer Res 58(17):3891–3895PubMedGoogle Scholar
  32. 32.
    Morecki S, Yacovlev E, Gelfand Y, Vilensky A, Slavin S (2004) Allogeneic versus syngeneic killer splenocytes as effector cells for the induction of graft-versus-tumor effect. Biol Blood Marrow Transpl 10(1):40–48CrossRefGoogle Scholar
  33. 33.
    Hamby K, Trexler A, Pearson TC, Larsen CP, Rigby MR, Kean LS (2007) NK cells rapidly reject allogeneic bone marrow in the spleen through a perforin- and Ly49D-dependent, but NKG2D-independent mechanism. Am J Transpl 7(8):1884–1896CrossRefGoogle Scholar
  34. 34.
    Kean LS, Hamby K, Koehn B, Lee E, Coley S, Stempora L, Adams AB, Heiss E, Pearson TC, Larsen CP (2006) NK cells mediate costimulation blockade-resistant rejection of allogeneic stem cells during nonmyeloablative transplantation. Am J Transpl 6(2):292–304CrossRefGoogle Scholar
  35. 35.
    Re F, Staudacher C, Zamai L, Vecchio V, Bregni M (2006) Killer cell Ig-like receptors ligand-mismatched, alloreactive natural killer cells lyse primary solid tumors. Cancer 107(3):640–648PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Peter W. H. Frings
    • 1
  • Catharina H. M. J. Van Elssen
    • 2
  • Lotte Wieten
    • 3
  • Catarina Matos
    • 1
  • Pierre S. J. G. Hupperets
    • 4
  • Harry C. Schouten
    • 1
  • Gerard M. J. Bos
    • 1
  • Michel van Gelder
    • 1
    Email author
  1. 1.Department of Internal Medicine, Division of HematologyMaastricht University Medical Center+MaastrichtThe Netherlands
  2. 2.PharmaCell BVMaastrichtThe Netherlands
  3. 3.Department of Transplantation ImmunologyMaastricht University Medical Center+MaastrichtThe Netherlands
  4. 4.Department of Internal Medicine, Division of Medical Oncology, GROW—School for Oncology and Developmental BiologyMaastricht University Medical Center+MaastrichtThe Netherlands

Personalised recommendations