Breast Cancer Research and Treatment

, Volume 126, Issue 3, pp 803–810 | Cite as

Young age, increased tumor proliferation and FOXM1 expression predict early metastatic relapse only for endocrine-dependent breast cancers

  • Christina Yau
  • Yixin Wang
  • Yi Zhang
  • John A. Foekens
  • Christopher C. Benz
Brief Report


It is unclear if earlier onset (<40 years) and greater proliferative capacity confer an equally poor prognosis to endocrine-dependent and endocrine-independent breast cancers. Available outcome (distant metastasis-free survival, DMFS) and expression microarray data from 621 adjuvant treatment-naïve, node-negative primary breast cancers were pooled for prognostic evaluation of age-at-diagnosis (<40 years vs. ≥40 years) and tumor proliferative capacity relative to estrogen receptor status (n = 400 ER-positive, n = 221 ER-negative). Transcriptome measures of proliferative capacity included a proliferation score (PS) based on a 61-gene proliferation signature and the single gene surrogate, FOXM1. Kaplan–Meier analyses revealed no significant difference in DMFS between ER-positive and ER-negative cases >5 years after diagnosis. In contrast, younger age and higher proliferative capacity resulted in significantly more metastatic events cumulated over 15 years, but only in ER-positive breast cancers where positive correlations between age and proliferation were observed. While strongly correlated, FOXM1 and PS did not appear equivalent in relation to age and prognosis. The poor prognosis associated with breast cancer arising before age 40 or with higher proliferative capacity pertains only to endocrine-dependent (ER-positive) breast cancer, indicating that different biological processes drive the metastatic potential of ER-negative breast cancer.


Breast cancer Young age Estrogen receptor Proliferation capacity FOXM1 

Supplementary material

10549_2011_1345_MOESM1_ESM.pdf (178 kb)
List of proliferation and Intrinsic/UNC genes mappable to the combined gene expression dataset (PDF 177 kb)


  1. 1.
    Benz CC (2008) Impact of aging on the biology of breast cancer. Crit Rev Oncol Hematol 66(1):65–74PubMedCrossRefGoogle Scholar
  2. 2.
    Anders CK, Hsu DS, Broadwater G, Acharya CR, Foekens JA, Zhang Y, Wang Y, Marcom PK, Marks JR, Febbo PG, Nevins JR, Potti A, Blackwell KL (2008) Young age at diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared patterns of gene expression. J Clin Oncol 26(20):3324–3330. doi:10.1200/jco.2007.14.2471 PubMedCrossRefGoogle Scholar
  3. 3.
    Fredholm H, Eaker S, Frisell J, Holmberg L, Fredriksson I, Lindman H (2009) Breast cancer in young women: poor survival despite intensive treatment. PLoS ONE 4(11):e7695PubMedCrossRefGoogle Scholar
  4. 4.
    Peppercorn J (2009) Breast cancer in women under 40. Oncology 23(6):465–474PubMedGoogle Scholar
  5. 5.
    Peppercorn J, Partridge AH (2008) Breast cancer in young women: a new color or a different shade of pink? J Clin Oncol 26(20):3303–3305. doi:10.1200/jco.2008.16.5621 PubMedCrossRefGoogle Scholar
  6. 6.
    Jatoi I, Anderson WF, Rosenberg PS (2008) Qualitative age-interactions in breast cancer: a tale of two diseases? Am J Clin Oncol 31(5):504–506. doi:510.1097/COC.1090b1013e3181844d3181841c PubMedCrossRefGoogle Scholar
  7. 7.
    Eppenberger-Castori S, Moore IIDH, Thor AD, Edgerton SM, Kueng W, Eppenberger U, Benz CC (2002) Age-associated biomarker profiles of human breast cancer. Int J Biochem Cell Biol 34(11):1318–1330PubMedCrossRefGoogle Scholar
  8. 8.
    Yau C, Fedele V, Roydasgupta R, Fridlyand J, Hubbard A, Gray J, Chew K, Dairkee S, Moore D, Schittulli F, Tommasi S, Paradiso A, Albertson D, Benz C (2007) Aging impacts transcriptomes but not genomes of hormone-dependent breast cancers. Breast Cancer Res 9(5):R59PubMedCrossRefGoogle Scholar
  9. 9.
    Wang Y, Klijn JGM, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EMJJ, Atkins D, Foekens JA (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679PubMedGoogle Scholar
  10. 10.
    Minn AJ, Gupta GP, Padua D, Bos P, Nguyen DX, Nuyten D, Kreike B, Zhang Y, Wang Y, Ishwaran H, Foekens JA, van de Vijver M, Massagua J (2007) Lung metastasis genes couple breast tumor size and metastatic spread. Proc Natl Acad Sci 104(16):6740–6745. doi:10.1073/pnas.0701138104 PubMedCrossRefGoogle Scholar
  11. 11.
    Desmedt C, Piette F, Loi S, Wang Y, Lallemand Fo, Haibe-Kains B, Viale G, Delorenzi M, Zhang Y, d’ Assignies MS, Bergh J, Lidereau R, Ellis P, Harris AL, Klijn JGM, Foekens JA, Cardoso F, Piccart MJ, Buyse M, Sotiriou C (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13(11):3207–3214. doi:10.1158/1078-0432.ccr-06-2765 PubMedCrossRefGoogle Scholar
  12. 12.
    van de Vijver MJ, He YD, Van’t Veer LJ, Dai H, Hart AAM, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009. doi:10.1056/NEJMoa021967 PubMedCrossRefGoogle Scholar
  13. 13.
    Clark GM (2000) Prognostic and predictive factors. In: Harris JR, Lippman ME, Morrow M, Osborne CK (eds) Diseases of the breast, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 489–514Google Scholar
  14. 14.
    Tutt A, Wang A, Rowland C, Gillett C, Lau K, Chew K, Dai H, Kwok S, Ryder K, Shu H, Springall R, Cane P, McCallie B, Kam-Morgan L, Anderson S, Buerger H, Gray J, Bennington J, Esserman L, Hastie T, Broder S, Sninsky J, Brandt B, Waldman F (2008) Risk estimation of distant metastasis in node-negative, estrogen receptor-positive breast cancer patients using an RT-PCR based prognostic expression signature. BMC Cancer 8(1):339PubMedCrossRefGoogle Scholar
  15. 15.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale A-L, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752PubMedCrossRefGoogle Scholar
  16. 16.
    Ly DH, Lockhart DJ, Lerner RA, Schultz PG (2000) Mitotic misregulation and human aging. Science 287(5462):2486–2492. doi:10.1126/science.287.5462.2486 PubMedCrossRefGoogle Scholar
  17. 17.
    Laoukili J, Stahl M, Medema RH (2007) FoxM1: at the crossroads of ageing and cancer. Biochim Biophys Acta 1775(1):92–102PubMedGoogle Scholar
  18. 18.
    Marron JS, Todd MJ, Ahn J (2007) Distance-weighted discrimination. J Am Stat Assoc 102:1267–1271CrossRefGoogle Scholar
  19. 19.
    Hu Z, Fan C, Oh D, Marron JS, He X, Qaqish B, Livasy C, Carey L, Reynolds E, Dressler L, Nobel A, Parker J, Ewend M, Sawyer L, Wu J, Liu Y, Nanda R, Tretiakova M, Orrico A, Dreher D, Palazzo J, Perreard L, Nelson E, Mone M, Hansen H, Mullins M, Quackenbush J, Ellis M, Olopade O, Bernard P, Perou C (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7(1):96PubMedCrossRefGoogle Scholar
  20. 20.
    Yau C, Esserman L, Moore DH, Waldman F, Sninsky J, Benz CC (2010) A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer. Breast Cancer Res 12(5):R85PubMedCrossRefGoogle Scholar
  21. 21.
    Pusztai L (2009) Gene expression profiling of breast cancer. Breast Cancer Res 11(3):S11PubMedCrossRefGoogle Scholar
  22. 22.
    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826. doi:10.1056/NEJMoa041588 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Christina Yau
    • 1
  • Yixin Wang
    • 2
  • Yi Zhang
    • 3
  • John A. Foekens
    • 4
  • Christopher C. Benz
    • 1
    • 5
  1. 1.Cancer and Developmental Therapeutics ProgramBuck Institute for Age ResearchNovatoUSA
  2. 2.Veridex LLC, Johnson and JohnsonSan DiegoUSA
  3. 3.Pfizer Global Pharmaceutical, Research and DevelopmentLa JollaUSA
  4. 4.Erasmus MC Rotterdam, Josephine Nefkens Institute and Cancer Genomics CentreRotterdamThe Netherlands
  5. 5.Comprehensive Cancer Center and Division of Oncology-HematologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations