Breast Cancer Research and Treatment

, Volume 130, Issue 2, pp 377–385 | Cite as

Significance of ER–Src axis in hormonal therapy resistance

  • Sreeram Vallabhaneni
  • Binoj C. Nair
  • Valerie Cortez
  • Rambabu Challa
  • Dimple Chakravarty
  • Rajeshwar Rao Tekmal
  • Ratna K. Vadlamudi
Preclinical study

Abstract

The estrogen receptor (ER) is implicated in the progression of breast cancer. Despite positive effects of hormonal therapy, initial or acquired resistance to endocrine therapies frequently occurs. Recent studies suggested ERα-coregulator PELP1 and growth factor receptor ErbB2/HER2 play an essential role in hormonal therapy responsiveness. Src axis couples ERα with HER2 and PELP1, thus representing a new pathway for targeted therapy resistance. To establish the significance of ER–Src axis in PELP1 and HER2 mediated therapy resistance, we have generated model cells that stably express Src-shRNA under conditions of PELP1, HER2 deregulation. Depletion of Src using shRNA substantially reduced E2 mediated activation of Src and MAPK activation in resistant model cells. Pharmacological inhibition of Src using dasatinib, an orally available inhibitor substantially inhibited the growth of therapy resistant MCF7–PELP1, MCF7–HER2, and MCF7–Tam model cells in proliferation assays. In post-menopausal xenograft based studies, treatment with dasatinib significantly inhibited the growth of therapy resistant cells. IHC analysis revealed that the tumors were ERα positive, and dasatinib treated tumors exhibited alterations in Src and MAPK signaling pathways. Combinatorial therapy of tamoxifen with dasatinib showed better therapeutic effect compared to single agent therapy on the growth of therapy resistant PELP1 driven tumors. The results from our study showed that ER–Src axis play an important role in promoting hormonal resistance by proto-oncogenes such as HER2, PELP1, and blocking this axis prevents the development of hormonal independence in vivo. Since PELP1, HER2, and Src kinase are commonly deregulated in breast cancers, combination therapies using both endocrine agents and dasatinib may have better therapeutic effect by delaying the development of hormonal resistance.

Keywords

Therapy resistance Estrogen receptor HER2 ER Src PELP1 Breast cancer Extranuclear signaling 

References

  1. 1.
    Ariazi EA, Ariazi JL, Cordera F, Jordan VC (2006) Estrogen receptors as therapeutic targets in breast cancer. Curr Top Med Chem 6:195–216CrossRefGoogle Scholar
  2. 2.
    Lewis-Wambi JS, Jordan VC (2005) Treatment of postmenopausal breast cancer with selective estrogen receptor modulators (SERMs). Breast Dis 24:93–105PubMedGoogle Scholar
  3. 3.
    Leary A, Dowsett M (2006) Combination therapy with aromatase inhibitors: the next era of breast cancer treatment? Br J Cancer 95:661–666PubMedCrossRefGoogle Scholar
  4. 4.
    Musgrove EA, Sutherland RL (2009) Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9:631–643PubMedCrossRefGoogle Scholar
  5. 5.
    Gururaj AE, Rayala SK, Vadlamudi RK, Kumar R (2006) Novel mechanisms of resistance to endocrine therapy: genomic and nongenomic considerations. Clin Cancer Res 12:1001s–1007sPubMedCrossRefGoogle Scholar
  6. 6.
    Schiff R, Massarweh SA, Shou J, Bharwani L, Arpino G, Rimawi M, Osborne CK (2005) Advanced concepts in estrogen receptor biology and breast cancer endocrine resistance: implicated role of growth factor signaling and estrogen receptor coregulators. Cancer Chemother Pharmacol 56(Suppl 1):10–20PubMedCrossRefGoogle Scholar
  7. 7.
    Losel R, Wehling M (2003) Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol 4:46–56PubMedCrossRefGoogle Scholar
  8. 8.
    Acconcia F, Kumar R (2005) Signaling regulation of genomic and nongenomic functions of estrogen receptors. Cancer Lett 238:1–14PubMedCrossRefGoogle Scholar
  9. 9.
    Song RX, Zhang Z, Santen RJ (2005) Estrogen rapid action via protein complex formation involving ERalpha and Src. Trends Endocrinol Metab 16:347–353PubMedCrossRefGoogle Scholar
  10. 10.
    Hall JM, McDonnell DP (2005) Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol Interv 5:343–357PubMedCrossRefGoogle Scholar
  11. 11.
    Smith CL, O’Malley BW (2004) Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 25:45–71PubMedCrossRefGoogle Scholar
  12. 12.
    Vadlamudi RK, Wang RA, Mazumdar A, Kim Y, Shin J, Sahin A, Kumar R (2001) Molecular cloning and characterization of PELP1, a novel human coregulator of estrogen receptor alpha. J Biol Chem 276:38272–38279PubMedGoogle Scholar
  13. 13.
    Rajhans R, Nair S, Holden AH, Kumar R, Tekmal RR, Vadlamudi RK (2007) Oncogenic potential of the nuclear receptor coregulator proline-, glutamic acid-, leucine-rich protein 1/modulator of the nongenomic actions of the estrogen receptor. Cancer Res 67:5505–5512PubMedCrossRefGoogle Scholar
  14. 14.
    Vadlamudi RK, Kumar R (2007) Functional and biological properties of the nuclear receptor coregulator PELP1/MNAR. Nucl Recept Signal 5:e004PubMedGoogle Scholar
  15. 15.
    Habashy HO, Powe DG, Rakha EA, Ball G, Macmillan RD, Green AR, Ellis IO (2009) The prognostic significance of PELP1 expression in invasive breast cancer with emphasis on the ER-positive luminal-like subtype. Breast Cancer Res Treat 120:603–612PubMedCrossRefGoogle Scholar
  16. 16.
    Trevino JG, Summy JM, Gallick GE (2006) SRC inhibitors as potential therapeutic agents for human cancers. Mini Rev Med Chem 6:681–687PubMedCrossRefGoogle Scholar
  17. 17.
    Russello SV, Shore SK (2004) SRC in human carcinogenesis. Front Biosci 9:139–144PubMedGoogle Scholar
  18. 18.
    Huang F, Reeves K, Han X, Fairchild C, Platero S, Wong TW, Lee F, Shaw P, Clark E (2007) Identification of candidate molecular markers predicting sensitivity in solid tumors to dasatinib: rationale for patient selection. Cancer Res 67:2226–2238PubMedCrossRefGoogle Scholar
  19. 19.
    Summy JM, Gallick GE (2006) Treatment for advanced tumors: SRC reclaims center stage. Clin Cancer Res 12:1398–1401PubMedCrossRefGoogle Scholar
  20. 20.
    Nagpal JK, Nair S, Chakravarty D, Rajhans R, Pothana S, Brann DW, Tekmal RR, Vadlamudi RK (2008) Growth factor regulation of estrogen receptor coregulator PELP1 functions via protein kinase A pathway. Mol Cancer Res 6:851–861PubMedCrossRefGoogle Scholar
  21. 21.
    Nabha SM, Glaros S, Hong M, Lykkesfeldt AE, Schiff R, Osborne K, Reddy KB (2005) Upregulation of PKC-delta contributes to antiestrogen resistance in mammary tumor cells. Oncogene 24:3166–3176PubMedCrossRefGoogle Scholar
  22. 22.
    Dimple C, Nair SS, Rajhans R, Pitcheswara PR, Liu J, Balasenthil S, Le XF, Burow ME, Auersperg N, Tekmal RR, Broaddus RR, Vadlamudi RK (2008) Role of PELP1/MNAR signaling in ovarian tumorigenesis. Cancer Res 68:4902–4909PubMedCrossRefGoogle Scholar
  23. 23.
    Vadlamudi RK, Bagheri-Yarmand R, Yang Z, Balasenthil S, Nguyen D, Sahin AA, den Hollanden P, Kumar R (2004) Dynein light chain 1, a p21-activated kinase 1-interacting substrate, promotes cancerous phenotypes. Cancer Cell 5:575–585PubMedCrossRefGoogle Scholar
  24. 24.
    Long BJ, Jelovac D, Handratta V, Thiantanawat A, MacPherson N, Ragaz J, Goloubeva OG, Brodie AM (2004) Therapeutic strategies using the aromatase inhibitor letrozole and tamoxifen in a breast cancer model. J Natl Cancer Inst 96:456–465PubMedCrossRefGoogle Scholar
  25. 25.
    Jensen MM, Jorgensen JT, Binderup T, Kjaer A (2008) Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper. BMC Med Imaging 8:16PubMedCrossRefGoogle Scholar
  26. 26.
    Euhus DM, Hudd C, LaRegina MC, Johnson FE (1986) Tumor measurement in the nude mouse. J Surg Oncol 31:229–234PubMedCrossRefGoogle Scholar
  27. 27.
    Vadlamudi RK, Balasenthil S, Sahin AA, Kies M, Weber RS, Kumar R, El-Naggar AK (2005) Novel estrogen receptor coactivator PELP1/MNAR gene and ERbeta expression in salivary duct adenocarcinoma: potential therapeutic targets. Hum Pathol 36:670–675PubMedCrossRefGoogle Scholar
  28. 28.
    Balasenthil S, Vadlamudi RK (2003) Functional interactions between the estrogen receptor coactivator PELP1/MNAR and retinoblastoma protein. J Biol Chem 278:22119–22127PubMedCrossRefGoogle Scholar
  29. 29.
    Vadlamudi RK, Manavathi B, Balasenthil S, Nair SS, Yang Z, Sahin AA, Kumar R (2005) Functional implications of altered subcellular localization of PELP1 in breast cancer cells. Cancer Res 65:7724–7732PubMedGoogle Scholar
  30. 30.
    Chang Q, Jorgensen C, Pawson T, Hedley DW (2008) Effects of dasatinib on EphA2 receptor tyrosine kinase activity and downstream signalling in pancreatic cancer. Br J Cancer 99:1074–1082PubMedCrossRefGoogle Scholar
  31. 31.
    Rajhans R, Nair HB, Nair SS, Cortez V, Ikuko K, Kirma NB, Zhou D, Holden AE, Brann DW, Chen S, Tekmal RR, Vadlamudi RK (2008) Modulation of in situ estrogen synthesis by PELP1: potential ER autocrine signaling loop in breast cancer cells. Mol Endocrinol 22:649–664PubMedCrossRefGoogle Scholar
  32. 32.
    Kumar R, Zhang H, Holm C, Vadlamudi RK, Landberg G, Rayala SK (2009) Extranuclear coactivator signaling confers insensitivity to tamoxifen. Clin Cancer Res 15:4123–4130PubMedCrossRefGoogle Scholar
  33. 33.
    Ali S, Coombes RC (2002) Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2:101–112PubMedCrossRefGoogle Scholar
  34. 34.
    Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19:833–842PubMedCrossRefGoogle Scholar
  35. 35.
    Lonard DM, O’Malley BW (2006) The expanding cosmos of nuclear receptor coactivators. Cell 125:411–414PubMedCrossRefGoogle Scholar
  36. 36.
    Collingwood TN, Urnov FD, Wolffe AP (1999) Nuclear receptors: coactivators, corepressors and chromatin remodeling in the control of transcription. J Mol Endocrinol 23:255–275PubMedCrossRefGoogle Scholar
  37. 37.
    Schiff R, Massarweh S, Shou J, Osborne CK (2003) Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response. Clin Cancer Res 9:447S–454SPubMedGoogle Scholar
  38. 38.
    Marcom PK, Isaacs C, Harris L, Wong ZW, Kommarreddy A, Novielli N, Mann G, Tao Y, Ellis MJ (2006) The combination of letrozole and trastuzumab as first or second-line biological therapy produces durable responses in a subset of HER2 positive and ER positive advanced breast cancers. Breast Cancer Res Treat 102:43–49PubMedCrossRefGoogle Scholar
  39. 39.
    Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, Schiff R (2004) Mechanisms of tamoxifen resistance: increased estrogen receptor–HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96:926–935PubMedCrossRefGoogle Scholar
  40. 40.
    Shin I, Miller T, Arteaga CL (2006) ErbB receptor signaling and therapeutic resistance to aromatase inhibitors. Clin Cancer Res 12:1008s–1012sPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Sreeram Vallabhaneni
    • 1
  • Binoj C. Nair
    • 1
  • Valerie Cortez
    • 1
  • Rambabu Challa
    • 1
  • Dimple Chakravarty
    • 1
  • Rajeshwar Rao Tekmal
    • 1
  • Ratna K. Vadlamudi
    • 1
  1. 1.Department of Obstetrics and Gynecology and CTRCThe UT Health Science Center at San AntonioSan AntonioUSA

Personalised recommendations