Breast Cancer Research and Treatment

, Volume 129, Issue 3, pp 747–760 | Cite as

High-resolution genomic profiling of male breast cancer reveals differences hidden behind the similarities with female breast cancer

  • Ida Johansson
  • Cecilia Nilsson
  • Pontus Berglund
  • Carina Strand
  • Göran Jönsson
  • Johan Staaf
  • Markus Ringnér
  • Heli Nevanlinna
  • Rosa B. Barkardottir
  • Åke Borg
  • Håkan Olsson
  • Lena Luts
  • Marie-Louise Fjällskog
  • Ingrid Hedenfalk
Preclinical study

Abstract

Male breast cancer (MBC) is extremely rare and poorly characterized on the molecular level. Using high-resolution genomic data, we aimed to characterize MBC by genomic imbalances and to compare it with female breast cancer (FBC), and further to investigate whether the genomic profiles hold any prognostic information. Fifty-six fresh frozen MBC tumors were analyzed using high-resolution tiling BAC arrays. Significant regions in common between cases were assessed using Genomic Identification of Significant Targets in Cancer (GISTIC) analysis. A publicly available genomic data set of 359 FBC tumors was used for reference purposes. The data revealed a broad pattern of aberrations, confirming that MBC is a heterogeneous tumor type. Genomic gains were more common in MBC than in FBC and often involved whole chromosome arms, while losses of genomic material were less frequent. The most common aberrations were similar between the genders, but high-level amplifications were more common in FBC. We identified two genomic subgroups among MBCs; male-complex and male-simple. The male-complex subgroup displayed striking similarities with the previously reported luminal-complex FBC subgroup, while the male-simple subgroup seems to represent a new subgroup of breast cancer occurring only in men. There are many similarities between FBC and MBC with respect to genomic imbalances, but there are also distinct differences as revealed by high-resolution genomic profiling. MBC can be divided into two comprehensive genomic subgroups, which may be of prognostic value. The male-simple subgroup appears notably different from any genomic subgroup so far defined in FBC.

Keywords

Male breast cancer Array-CGH BRCA2 Molecular subtypes BPH 

Supplementary material

10549_2010_1262_MOESM1_ESM.doc (818 kb)
(DOC 819 kb)

References

  1. 1.
    NORDCAN: Cancer incidence, mortality, prevalence and prediction in the nordic countries (2009) Association of the Nordic Cancer Registries. Danish Cancer Society. http://www.ancr.nu
  2. 2.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249. doi:10.3322/caac.20006 PubMedCrossRefGoogle Scholar
  3. 3.
    Stang A, Thomssen C (2008) Decline in breast cancer incidence in the United States: what about male breast cancer? Breast Cancer Res Treat 112(3):595–596. doi:10.1007/s10549-007-9882-3 PubMedCrossRefGoogle Scholar
  4. 4.
    Giordano SH (2005) A review of the diagnosis and management of male breast cancer. Oncologist 10(7):471–479. doi:10.1634/theoncologist.10-7-471 PubMedCrossRefGoogle Scholar
  5. 5.
    Agrawal A, Ayantunde AA, Rampaul R, Robertson JF (2007) Male breast cancer: a review of clinical management. Breast Cancer Res Treat 103(1):11–21. doi:10.1007/s10549-006-9356-z PubMedCrossRefGoogle Scholar
  6. 6.
    Korde LA, Zujewski JA, Kamin L, Giordano S, Domchek S, Anderson WF, Bartlett JM, Gelmon K, Nahleh Z, Bergh J, Cutuli B, Pruneri G, McCaskill-Stevens W, Gralow J, Hortobagyi G, Cardoso F (2010) Multidisciplinary meeting on male breast cancer: summary and research recommendations. J Clin Oncol 28(12):2114–2122. doi:10.1200/JCO.2009.25.5729 PubMedCrossRefGoogle Scholar
  7. 7.
    Ciocca V, Bombonati A, Gatalica Z, Di Pasquale M, Milos A, Ruiz-Orrico A, Dreher D, Folch N, Monzon F, Santeusanio G, Perou CM, Bernard PS, Palazzo JP (2006) Cytokeratin profiles of male breast cancers. Histopathology 49(4):365–370. doi:10.1111/j.1365-2559.2006.02519.x PubMedCrossRefGoogle Scholar
  8. 8.
    Rudlowski C, Friedrichs N, Faridi A, Fuzesi L, Moll R, Bastert G, Rath W, Buttner R (2004) Her-2/neu gene amplification and protein expression in primary male breast cancer. Breast Cancer Res Treat 84(3):215–223. doi:10.1023/B:BREA.0000019953.92921.7e PubMedCrossRefGoogle Scholar
  9. 9.
    Ottini L, Rizzolo P, Zanna I, Falchetti M, Masala G, Ceccarelli K, Vezzosi V, Gulino A, Giannini G, Bianchi S, Sera F, Palli D (2009) BRCA1/BRCA2 mutation status and clinical-pathologic features of 108 male breast cancer cases from Tuscany: a population-based study in central Italy. Breast Cancer Res Treat 116(3):577–586. doi:10.1007/s10549-008-0194-z PubMedCrossRefGoogle Scholar
  10. 10.
    Ottini L, Palli D, Rizzo S, Federico M, Bazan V, Russo A (2009) Male breast cancer. Crit Rev Oncol Hematol 73(2):141–155. doi:10.1016/j.critrevonc.2009.04.003 PubMedCrossRefGoogle Scholar
  11. 11.
    Brinton LA, Richesson DA, Gierach GL, Lacey JV Jr, Park Y, Hollenbeck AR, Schatzkin A (2008) Prospective evaluation of risk factors for male breast cancer. J Natl Cancer Inst 100(20):1477–1481. doi:10.1093/jnci/djn329 PubMedCrossRefGoogle Scholar
  12. 12.
    Heller KS, Rosen PP, Schottenfeld D, Ashikari R, Kinne DW (1978) Male breast cancer: a clinicopathologic study of 97 cases. Ann Surg 188(1):60–65PubMedCrossRefGoogle Scholar
  13. 13.
    Anderson WF, Devesa SS (2005) In situ male breast carcinoma in the Surveillance, Epidemiology, and End Results database of the National Cancer Institute. Cancer 104(8):1733–1741. doi:10.1002/cncr.21353 PubMedCrossRefGoogle Scholar
  14. 14.
    Thalib L, Hall P (2008) Survival of male breast cancer patients: Population-based cohort study. Cancer Sci 100(2):292–295. doi:10.1111/j.1349-7006.2008.01032.x CrossRefGoogle Scholar
  15. 15.
    Giordano SH, Cohen DS, Buzdar AU, Perkins G, Hortobagyi GN (2004) Breast carcinoma in men: a population-based study. Cancer 101(1):51–57. doi:10.1002/cncr.20312 PubMedCrossRefGoogle Scholar
  16. 16.
    Donegan WL, Redlich PN, Lang PJ, Gall MT (1998) Carcinoma of the breast in males: a multiinstitutional survey. Cancer 83(3):498–509PubMedCrossRefGoogle Scholar
  17. 17.
    Giordano SH (2008) Male breast cancer: it’s time for evidence instead of extrapolation. Onkologie 31(10):505–506. doi:10.1159/000153894 PubMedCrossRefGoogle Scholar
  18. 18.
    Jonsson G, Staaf J, Vallon-Christersson J, Ringner M, Holm K, Hegardt C, Gunnarsson H, Fagerholm R, Strand C, Agnarsson BA, Kilpivaara O, Luts L, Heikkila P, Aittomaki K, Blomqvist C, Loman N, Malmstrom P, Olsson H, Johannsson OT, Arason A, Nevanlinna H, Barkardottir RB, Borg A (2010) Genomic subtypes of breast cancer identified by array comparative genomic hybridization display distinct molecular and clinical characteristics. Breast Cancer Res 12(3):R42. doi:10.1186/bcr2596 PubMedCrossRefGoogle Scholar
  19. 19.
    Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T, Chen F, Feiler H, Tokuyasu T, Kingsley C, Dairkee S, Meng Z, Chew K, Pinkel D, Jain A, Ljung BM, Esserman L, Albertson DG, Waldman FM, Gray JW (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541. doi:10.1016/j.ccr.2006.10.009 PubMedCrossRefGoogle Scholar
  20. 20.
    Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, Livasy C, Carey LA, Reynolds E, Dressler L, Nobel A, Parker J, Ewend MG, Sawyer LR, Wu J, Liu Y, Nanda R, Tretiakova M, Ruiz Orrico A, Dreher D, Palazzo JP, Perreard L, Nelson E, Mone M, Hansen H, Mullins M, Quackenbush JF, Ellis MJ, Olopade OI, Bernard PS, Perou CM (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96. doi:10.1186/1471-2164-7-96 PubMedCrossRefGoogle Scholar
  21. 21.
    Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423. doi:10.1073/pnas.0932692100 PubMedCrossRefGoogle Scholar
  22. 22.
    Fridlyand J, Snijders AM, Ylstra B, Li H, Olshen A, Segraves R, Dairkee S, Tokuyasu T, Ljung BM, Jain AN, McLennan J, Ziegler J, Chin K, Devries S, Feiler H, Gray JW, Waldman F, Pinkel D, Albertson DG (2006) Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 6:96. doi:10.1186/1471-2407-6-96 PubMedCrossRefGoogle Scholar
  23. 23.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. doi:10.1038/35021093 PubMedCrossRefGoogle Scholar
  24. 24.
    Horlings HM, Lai C, Nuyten DS, Halfwerk H, Kristel P, van Beers E, Joosse SA, Klijn C, Nederlof PM, Reinders MJ, Wessels LF, van de Vijver MJ (2010) Integration of DNA copy number alterations and prognostic gene expression signatures in breast cancer patients. Clin Cancer Res 16(2):651–663. doi:10.1158/1078-0432.CCR-09-0709 PubMedCrossRefGoogle Scholar
  25. 25.
    Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10(16):5367–5374. doi:10.1158/1078-0432.CCR-04-0220 PubMedCrossRefGoogle Scholar
  26. 26.
    Ge Y, Sneige N, Eltorky MA, Wang Z, Lin E, Gong Y, Guo M (2009) Immunohistochemical characterization of subtypes of male breast carcinoma. Breast Cancer Res 11(3):R28. doi:10.1186/bcr2258 PubMedCrossRefGoogle Scholar
  27. 27.
    Baldetorp B, Bendahl PO, Ferno M, Stal O (2003) Improved DNA flow cytometric, DNA ploidy, and S-phase reproducibility between 15 laboratories in analysis of breast cancer using generalized guidelines. Cytometry A 56(1):1–7. doi:10.1002/cyto.a.10083 PubMedCrossRefGoogle Scholar
  28. 28.
    Chang H (2010) Howard Chang’s lab homepage. http://changlab.stanford.edu/protocols.html. Accessed 20 Oct 2010
  29. 29.
    Jonsson G, Staaf J, Olsson E, Heidenblad M, Vallon-Christersson J, Osoegawa K, de Jong P, Oredsson S, Ringner M, Hoglund M, Borg A (2007) High-resolution genomic profiles of breast cancer cell lines assessed by tiling BAC array comparative genomic hybridization. Genes Chromosomes Cancer 46(6):543–558. doi:10.1002/gcc.20438 PubMedCrossRefGoogle Scholar
  30. 30.
    Staaf J, Jonsson G, Ringner M, Vallon-Christersson J (2007) Normalization of array-CGH data: influence of copy number imbalances. BMC Genomics 8:382. doi:10.1186/1471-2164-8-382 PubMedCrossRefGoogle Scholar
  31. 31.
    Venkatraman ES, Olshen AB (2007) A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23(6):657–663. doi:10.1093/bioinformatics/btl646 PubMedCrossRefGoogle Scholar
  32. 32.
    Marchio C, Lambros MB, Gugliotta P, Di Cantogno LV, Botta C, Pasini B, Tan DS, Mackay A, Fenwick K, Tamber N, Bussolati G, Ashworth A, Reis-Filho JS, Sapino A (2009) Does chromosome 17 centromere copy number predict polysomy in breast cancer? A fluorescence in situ hybridization and microarray-based CGH analysis. J Pathol 219(1):16–24. doi:10.1002/path.2574 PubMedCrossRefGoogle Scholar
  33. 33.
    Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D, Vivanco I, Lee JC, Huang JH, Alexander S, Du J, Kau T, Thomas RK, Shah K, Soto H, Perner S, Prensner J, Debiasi RM, Demichelis F, Hatton C, Rubin MA, Garraway LA, Nelson SF, Liau L, Mischel PS, Cloughesy TF, Meyerson M, Golub TA, Lander ES, Mellinghoff IK, Sellers WR (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci USA 104(50):20007–20012. doi:10.1073/pnas.0710052104 PubMedCrossRefGoogle Scholar
  34. 34.
    Staaf J, Jonsson G, Ringner M, Vallon-Christersson J, Grabau D, Arason A, Gunnarsson H, Agnarsson BA, Malmstrom PO, Johannsson OT, Loman N, Barkardottir RB, Borg A (2010) High-resolution genomic and expression analyses of copy number alterations in HER2-amplified breast cancer. Breast Cancer Res 12(3):R25. doi:10.1186/bcr2568 PubMedCrossRefGoogle Scholar
  35. 35.
    The R Project for Statistical Computing. www.r-project.org
  36. 36.
    Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98(9):5116–5121. doi:10.1073/pnas.091062498 PubMedCrossRefGoogle Scholar
  37. 37.
    Green AR, Burney C, Granger CJ, Paish EC, El-Sheikh S, Rakha EA, Powe DG, Macmillan RD, Ellis IO, Stylianou E (2008) The prognostic significance of steroid receptor co-regulators in breast cancer: co-repressor NCOR2/SMRT is an independent indicator of poor outcome. Breast Cancer Res Treat 110(3):427–437. doi:10.1007/s10549-007-9737-y PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang B, Faller DV, Wang S (2009) HIC1 regulates tumor cell responses to endocrine therapies. Mol Endocrinol 23(12):2075–2085. doi:10.1210/me.2009-0231 PubMedCrossRefGoogle Scholar
  39. 39.
    Xu J, Lv S, Qin Y, Shu F, Xu Y, Chen J, Xu BE, Sun X, Wu J (2007) TRB3 interacts with CtIP and is overexpressed in certain cancers. Biochim Biophys Acta 1770(2):273–278. doi:10.1016/j.bbagen.2006.09.025 PubMedGoogle Scholar
  40. 40.
    Akisik E, Yazici H, Dalay N (2010) ARLTS1, MDM2 and RAD51 gene variations are associated with familial breast cancer. Mol Biol Rep. doi:10.1007/s11033-010-0113-3
  41. 41.
    Andre F, Job B, Dessen P, Tordai A, Michiels S, Liedtke C, Richon C, Yan K, Wang B, Vassal G, Delaloge S, Hortobagyi GN, Symmans WF, Lazar V, Pusztai L (2009) Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin Cancer Res 15(2):441–451. doi:10.1158/1078-0432.CCR-08-1791 PubMedCrossRefGoogle Scholar
  42. 42.
    Rennstam K, Ahlstedt-Soini M, Baldetorp B, Bendahl PO, Borg A, Karhu R, Tanner M, Tirkkonen M, Isola J (2003) Patterns of chromosomal imbalances defines subgroups of breast cancer with distinct clinical features and prognosis. A study of 305 tumors by comparative genomic hybridization. Cancer Res 63(24):8861–8868PubMedGoogle Scholar
  43. 43.
    Rudlowski C, Schulten HJ, Golas MM, Sander B, Barwing R, Palandt JE, Schlehe B, Lindenfelser R, Moll R, Liersch T, Schumpelick V, Gunawan B, Fuzesi L (2006) Comparative genomic hybridization analysis on male breast cancer. Int J Cancer 118(10):2455–2460. doi:10.1002/ijc.21646 PubMedCrossRefGoogle Scholar
  44. 44.
    Nahleh ZA (2006) Hormonal therapy for male breast cancer: a different approach for a different disease. Cancer Treat Rev 32(2):101–105. doi:10.1016/j.ctrv.2005.12.007 PubMedCrossRefGoogle Scholar
  45. 45.
    Tirkkonen M, Kainu T, Loman N, Johannsson OT, Olsson H, Barkardottir RB, Kallioniemi OP, Borg A (1999) Somatic genetic alterations in BRCA2-associated and sporadic male breast cancer. Genes Chromosomes Cancer 24(1):56–61PubMedCrossRefGoogle Scholar
  46. 46.
    Howard BA, Gusterson BA (2000) Human breast development. J Mammary Gland Biol Neoplasia 5(2):119–137PubMedCrossRefGoogle Scholar
  47. 47.
    Russo J, Tay LK, Russo IH (1982) Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Res Treat 2(1):5–73PubMedCrossRefGoogle Scholar
  48. 48.
    Pich A, Margaria E, Chiusa L, Ponti R, Geuna M (1996) DNA ploidy and p53 expression correlate with survival and cell proliferative activity in male breast carcinoma. Hum Pathol 27(7):676–682PubMedCrossRefGoogle Scholar
  49. 49.
    Bagwell CB, Clark GM, Spyratos F, Chassevent A, Bendahl PO, Stal O, Killander D, Jourdan ML, Romain S, Hunsberger B, Baldetorp B (2001) Optimizing flow cytometric DNA ploidy and S-phase fraction as independent prognostic markers for node-negative breast cancer specimens. Cytometry 46(3):121–135PubMedCrossRefGoogle Scholar
  50. 50.
    Pinto AE, Andre S, Soares J (1999) Short-term significance of DNA ploidy and cell proliferation in breast carcinoma: a multivariate analysis of prognostic markers in a series of 308 patients. J Clin Pathol 52(8):604–611PubMedCrossRefGoogle Scholar
  51. 51.
    Zhu YS (2005) Molecular basis of steroid action in the prostate. Cellscience 1(4):27–55. doi:10.1901/jaba.2005.1-27 PubMedGoogle Scholar
  52. 52.
    McConnell JD, Roehrborn CG, Bautista OM, Andriole GL Jr, Dixon CM, Kusek JW, Lepor H, McVary KT, Nyberg LM Jr, Clarke HS, Crawford ED, Diokno A, Foley JP, Foster HE, Jacobs SC, Kaplan SA, Kreder KJ, Lieber MM, Lucia MS, Miller GJ, Menon M, Milam DF, Ramsdell JW, Schenkman NS, Slawin KM, Smith JA, Medical Therapy of Prostatic Symptoms Research Group (2003) The long-term effect of doxazosin, finasteride, and combination therapy on the clinical progression of benign prostatic hyperplasia. N Engl J Med 349(25):2387–2398. doi:10.1056/NEJMoa030656 PubMedCrossRefGoogle Scholar
  53. 53.
    Trifiro MD, Parsons JK, Palazzi-Churas K, Bergstrom J, Lakin C, Barrett-Connor E (2009) Serum sex hormones and the 20-year risk of lower urinary tract symptoms in community-dwelling older men. BJU Int 105(11):1554–1559. doi:10.1111/j.1464-410X.2009.09090.x PubMedCrossRefGoogle Scholar
  54. 54.
    Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R, Meltzer P, Gusterson B, Esteller M, Kallioniemi OP, Wilfond B, Borg A, Trent J (2001) Gene-expression profiles in hereditary breast cancer. N Engl J Med 344(8):539–548. doi:10.1056/NEJM200102223440801 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Ida Johansson
    • 1
  • Cecilia Nilsson
    • 2
    • 3
  • Pontus Berglund
    • 1
  • Carina Strand
    • 1
  • Göran Jönsson
    • 1
    • 4
  • Johan Staaf
    • 1
    • 4
  • Markus Ringnér
    • 1
    • 4
  • Heli Nevanlinna
    • 5
  • Rosa B. Barkardottir
    • 6
  • Åke Borg
    • 1
    • 4
  • Håkan Olsson
    • 1
  • Lena Luts
    • 7
  • Marie-Louise Fjällskog
    • 3
  • Ingrid Hedenfalk
    • 1
  1. 1.Department of Oncology, Clinical SciencesLund UniversityLundSweden
  2. 2.Center for Clinical ResearchCentral Hospital of VästeråsVästeråsSweden
  3. 3.Department of OncologyUppsala UniversityUppsalaSweden
  4. 4.CREATE Health Strategic Center for Translational Cancer ResearchLund UniversityLundSweden
  5. 5.Department of Obstetrics and GynaecologyHelsinki University Central HospitalHelsinkiFinland
  6. 6.Department of PathologyLandspitali-University HospitalReykjavikIceland
  7. 7.Department of Clinical PathologyUniversity and Regional Laboratories, Lund UniversityLundSweden

Personalised recommendations