Breast Cancer Research and Treatment

, Volume 130, Issue 1, pp 49–60

Role of CD200 expression in regulation of metastasis of EMT6 tumor cells in mice

  • Reginald M. Gorczynski
  • David A. Clark
  • Nuray Erin
  • Ismat Khatri
Preclinical study


Previous studies have confirmed that levels of CD200 expression on the cells of the transplantable EMT6 mouse breast cancer line are increased markedly during growth in immunocompetent mice, unlike the persistent low levels of expression observed in NOD-SCID.IL-2γr−/− mice or mice with generalized over-expression of a CD200 transgene (CD200tg mice). Faster tumor growth occurs in both of these latter mice, with decreased evidence for a host immune reaction in lymph nodes draining the tumor (DLN). We now report evidence for a role for CD200 expression (by the host and/or tumor cells) in increased seeding of tumor cells to DLN in immunocompromised (CD200tg or NOD-SCID.IL-2γr−/−) vs immunocompetent mice, by limiting dilution cloning of tumor cells from DLN (vs contralateral lymph nodes, CLN), using control and GFP-tagged EMT6 cells. Neutralization of expressed CD200 by anti-CD200mAbs decreased the tumor metastasis at the same time as increasing detection of cytotoxic anti-tumor immune cells in DLN. Infusion of either anti-CD4 to deplete T-effector cells, or anti-TGFβ antibody, increased metastasis to DLN, as did indeed the infusion of EMT6 cells selected for the loss of TGFβRII expression. It is concluded that the increased CD200 expression by breast cancer cells (and/or host tissue) may be an important variable involved in determining the risk of metastasis.


Breast cancer Metastasis CD200 transgene Immunotherapy 

Supplementary material

10549_2010_1259_MOESM1_ESM.ppt (266 kb)
Supplementary material 1 (PPT 266 kb)
10549_2010_1259_MOESM2_ESM.docx (11 kb)
Supplementary material 2 (DOCX 11 kb)


  1. 1.
    Geiger TR, Peeper DS (2009) Metastasis mechanisms. Biochim Biophys Acta 1796:293–308PubMedGoogle Scholar
  2. 2.
    Bierie B, Moses HL (2009) Gain or loss of TGF beta signaling in mammary carcinoma cells can promote metastasis. Cell Cycle 8:3319–3327PubMedCrossRefGoogle Scholar
  3. 3.
    Pandit TS, Kennette W, MacKenzie L, Zhang GH, AlKatib W, Andrews J, Vantyghem SA, Ormond DG, Allan AL, Rodenhiser DI, Chambers AF, Tuck AB (2009) Lymphatic metastasis of breast cancer cells is associated with differential gene expression profiles that predict cancer stem cell-like properties and the ability to survive, establish and grow in a foreign environment. Int J Oncol 35:297–308PubMedGoogle Scholar
  4. 4.
    Pfeffer U, Romeo F, Noonan DM, Albini A (2009) Prediction of breast cancer metastasis by genomic profiling: where do we stand? Clin Exp Metastasis 26:547–558PubMedCrossRefGoogle Scholar
  5. 5.
    DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16:91–102PubMedCrossRefGoogle Scholar
  6. 6.
    Valdivia-Silva JE, Franco-Barraza J, Silva ALE, DuPont G, Soldevila G, Meza I, Garcia-Zepeda EA (2009) Effect of pro-inflammatory cytokine stimulation on human breast cancer: Implications of chemokine receptor expression in cancer metastasis. Cancer Lett 283:176–185PubMedCrossRefGoogle Scholar
  7. 7.
    Pollard JW (2008) Macrophages define the invasive microenvironment in breast cancer. J Leukocyte Biol 84:623–630PubMedCrossRefGoogle Scholar
  8. 8.
    Walser TC, Ma XR, Kundu N, Dorsey R, Goloubeva O, Fulton AM (2007) Immune-mediated modulation of breast cancer growth and metastasis by the chemokine mig (CXCL9) in a murine model. J Immunother 30:490–498PubMedCrossRefGoogle Scholar
  9. 9.
    Ma XR, Norsworthy K, Kundu N, Rodgers WH, Gimotty PA, Goloubeva O, Lipsky M, Li Y, Holt D, Fulton A (2009) CXCR3 expression is associated with poor survival in breast cancer and promotes metastasis in a murine model. Mol Cancer Ther 8:490–498PubMedCrossRefGoogle Scholar
  10. 10.
    Takahashi M, Miyazaki H, Furihata M, Sakai H, Konakahara T, Watanabe M, Okada T (2009) Chemokine CCL2/MCP-1 negatively regulates metastasis in a highly bone marrow-metastatic mouse breast cancer model. Clin Exp Metastasis 26:817–828PubMedCrossRefGoogle Scholar
  11. 11.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867PubMedCrossRefGoogle Scholar
  12. 12.
    Huang B, Pan PY, Li QS, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH (2006) Gr-1(+)CD115(+) immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131PubMedCrossRefGoogle Scholar
  13. 13.
    Yang L, Debusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC (2004) Expansion of myeloid immune suppressor GR1+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421PubMedCrossRefGoogle Scholar
  14. 14.
    Lee NR, Song EK, Jang KY, Choi HN, Moon WS, Kwon K, Lee JH, Yim CY, Kwak JY (2008) Prognostic impact of tumor infiltrating FOXP3 positive regulatory T cells in diffuse large B-cell lymphoma at diagnosis. Leuk Lymphoma 49:247–256PubMedCrossRefGoogle Scholar
  15. 15.
    Qin FXF (2009) Dynamic behavior and function of Foxp3(+) regulatory T cells in tumor bearing host. Cell Mol Immunol 6:3–13PubMedCrossRefGoogle Scholar
  16. 16.
    Bierie B, Moses HL (2010) Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev 21:49–59PubMedCrossRefGoogle Scholar
  17. 17.
    Chen T, Jackson CR, Link A, Markey MP, Colligan BM, Douglass LE, Pemberton JO, Deddens JA, Graff JR, Carter JH (2006) Int7G24A variant of transforming growth factor-beta receptor type 1 is associated with invasive breast cancer. Clin Cancer Res 12:392–397PubMedCrossRefGoogle Scholar
  18. 18.
    Yang L, Huang JH, Ren XB, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Mosesl HL (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13:23–35PubMedCrossRefGoogle Scholar
  19. 19.
    Muraoka RS, Dumont N, Ritter CA, Dugger TC, Brantley DM, Chen J, Easterly E, Roebuck R, Ryan S, Gotwals PJ, Koteliansky V, Arteaga CL (2002) Blockade of TGFb inhibits mammary tumor cell viability, migration and metastases. J Clin Invest 109:1551–1559PubMedGoogle Scholar
  20. 20.
    Moreaux J, Hose D, Reme T, Jourdan E, Hundemer M, Legouffe E, Moine P, Bourin P, Moos M, Corre J, Möhler T, De Vos J, Rossi JF, Goldschmidt H, Klein B (2006) CD200 is a new prognostic factor in multiple myeloma. Blood 108:4194–4197PubMedCrossRefGoogle Scholar
  21. 21.
    Petermann KB, Rozenberg GI, Zedek D, Groben P, McKinnon K, Buehler C, Kim WY, Shields JM, Penland S, Bear JE, Thomas NE, Serody JS, Sharpless NE (2007) CD200 is induced by ERK and is a potential therapeutic target in melanoma. J Clin Invest 117:3922–3929PubMedGoogle Scholar
  22. 22.
    Moreaux J, Veyrune JL, Reme T, DeVos J, Klein B (2008) CD200: a putative therapeutic target in cancer. Biochem Biophys Res Commun 366:117–122PubMedCrossRefGoogle Scholar
  23. 23.
    Siva A, Xin H, Qin F, Oltean D, Bowdish KS, Kretz-Rommel A (2008) Immune modulation by melanoma and ovarian tumor cells through expression of the immunosuppressive molecule CD200. Cancer Immunol Immunother 57:987–996PubMedCrossRefGoogle Scholar
  24. 24.
    McWhirter JR, KretzRommel A, Saven A, Maruyama T, Potter KN, Mockridge CI, Ravey EP, Qin FH, Bowdish KS (2006) Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proc Natl Acad Sci USA 103:1041–1046PubMedCrossRefGoogle Scholar
  25. 25.
    Tonks A (2007) CD200 as a prognostic factor in acute myeloid leukemia. Leukemia 21:566–568PubMedCrossRefGoogle Scholar
  26. 26.
    Kawasaki BT, Mistree T, Hurt EM, Kalathur M, Farrar WL (2007) Co-expression of the tolerogenic glycoprotein, CD200, with markers for cancer stem cells. Biochem Biophys Res Commun 364:778–782PubMedCrossRefGoogle Scholar
  27. 27.
    Kawasaki BT, Hurt EM, Mistree T, Farrar WL (2008) Targeting cancer stem cells with phytochemicals. Mol Interv 8:174–184PubMedCrossRefGoogle Scholar
  28. 28.
    Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH, Barclay AN, Sedgwick JD (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290:1768–1771PubMedCrossRefGoogle Scholar
  29. 29.
    Gorczynski RM, Chen Z, Diao J, Khatri I, Wong K, Yu K, Behnke J (2010) Breast cancer cell CD200 expression regulates immune response to EMT6 tumor cells in mice. Breast Cancer Res Treat 123:405–415PubMedCrossRefGoogle Scholar
  30. 30.
    Gorczynski RM, Chen ZQ, He W, Khatri I, Sun Y, Yu K, Boudakov I (2009) Expression of a CD200 transgene is necessary for induction but not maintenance of tolerance to cardiac and skin allografts. J Immunol 183:1560–1568PubMedCrossRefGoogle Scholar
  31. 31.
    Gorczynski RM (2005) CD200 and its receptors as targets for immunoregulation. Curr Opin Invest Drugs 6:483–488Google Scholar
  32. 32.
    Gorczynski RM (2005) Thymocyte/splenocyte-derived CD4+CD25+ Treg stimulated by anti-CD200R2 derived dendritic cells suppress MLCs and skin graft rejection. Transplantation 81:1027–1034CrossRefGoogle Scholar
  33. 33.
    Boudakov I, Liu J, Fan N, Gulay P, Wong K, Gorczynski RM (2007) Mice lacking CD200R1 show absence of suppression of lipopolysaccharide-induced tumor necrosis factor-alpha and mixed leukocyte culture responses by CD200. Transplantation 84:251–257PubMedCrossRefGoogle Scholar
  34. 34.
    Andrews PD (2003) Aurora kinases: shining lights on the therapeutic horizon? Oncogene 24:5005–5015CrossRefGoogle Scholar
  35. 35.
    Snedecor GW, Cochrane WG (1971) Statistical methods, 6th edn. Iowa State University Press, Amres, pp 135–160Google Scholar
  36. 36.
    Kalliomaki TM, McCallum G, Wells PG, Hill RP (2009) Progression and metastasis in a transgenic mouse breast cancer model: effects of exposure to in vivo hypoxia. Cancer Lett 282:98–108PubMedCrossRefGoogle Scholar
  37. 37.
    Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T, Aokage K, Saijo N, Nishiwaki Y, Gemma A, Kudoh S, Ochiai A (2008) Predominant infiltration of macrophages and CD8(+) T cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer 113:1387–1395PubMedCrossRefGoogle Scholar
  38. 38.
    Sica A, Allavena P, Mantovani A (2008) Cancer related inflammation: the macrophage connection. Cancer Lett 267:204–215PubMedCrossRefGoogle Scholar
  39. 39.
    Baumgartner J, Wilson C, Palmer B, Richter D, Banerjee A, McCarter M (2007) Melanoma induces immunosuppression by up-regulating FOXP3(+) regulatory T cells. J Surg Res 141:72–77PubMedCrossRefGoogle Scholar
  40. 40.
    Hilchey SP, De A, Rimsza LM, Bankert RB, Bernstein SH (2007) Follicular lymphoma intratumoral CD4(+)CD25(+)GITR(+) regulatory T cells potently suppress CD3/CD28-costimulated autologous and allogeneic CD8(+)CD25(−) and CD4(+)CD25(−) T cells. J Immunol 178:4051–4061PubMedGoogle Scholar
  41. 41.
    Sakaguchi S (2004) Naturally arising CD4(+) regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562PubMedCrossRefGoogle Scholar
  42. 42.
    Nagaraj S, Gabrilovich DI (2008) Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res 68:2561–2563PubMedCrossRefGoogle Scholar
  43. 43.
    Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59PubMedCrossRefGoogle Scholar
  44. 44.
    Bierie B, Chung CH, Parker JS, Stover DG, Cheng N, Chytil A, Aakre M, Shyr Y, Moses HL (2009) Abrogation of TGF-beta signaling enhances chemokine production and correlates with prognosis in human breast cancer. J Clin Invest 119:1571–1582PubMedCrossRefGoogle Scholar
  45. 45.
    Muraoka-Cook RS, Kurokawa H, Koh YS, Forbes JT, Roebuck LR, Barcellos-Hoff MH, Moody SE, Chodosh LA, Arteaga CL (2004) Conditional overexpression of active transforming growth factor beta1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Res 64:9002–9011PubMedCrossRefGoogle Scholar
  46. 46.
    Hess MR, Freschi M, Manzo T, Jachetti E, Degl’Innocenti E, Grioni M, Basso V, Bonini C, Simpson E, Mondino A, Bellone M (2010) Concomitant tumor and minor histocompatibility antigen-specific immunity initiate rejection and maintain remission from established spontaneous solid tumors. Cancer Res 70:3505CrossRefGoogle Scholar
  47. 47.
    Wong KK, Shaha S, Spaner D, Gorczynski RM (2009) Potential role for serum soluble CD200 in human Chronic Lymphocytic Leukemia. J Immunol 182:15Google Scholar
  48. 48.
    Ghebeh H, Barhoush E, Tulbah A, Elkum N, Al-Tweigeri T, Dermime S (2008) FOXP3+Tregs and B7-H1+/PD-1+ T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: implication for immunotherapy. BMC Cancer 8:57–68PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Reginald M. Gorczynski
    • 1
  • David A. Clark
    • 1
    • 2
  • Nuray Erin
    • 3
  • Ismat Khatri
    • 1
  1. 1.University Health Network, Toronto General HospitalTorontoCanada
  2. 2.Department Medicine and Juravinski Cancer CenterMcMaster UniversityHamiltonCanada
  3. 3.School of Medicine, Department of Clinical PharmacologyAkdeniz UniversityAntalyaTurkey

Personalised recommendations