Breast Cancer Research and Treatment

, Volume 129, Issue 1, pp 23–35 | Cite as

Effects of estrogen on the proportion of stem cells in the breast

  • Bruno M. Simões
  • Marco Piva
  • Oihana Iriondo
  • Valentine Comaills
  • Jose A. López-Ruiz
  • Iñaki Zabalza
  • Jon A. Mieza
  • Olga Acinas
  • Maria d.M. Vivanco
Preclinical study


There is increasing evidence that breast cancers contain tumor-initiating cells with stem cell properties. The importance of estrogen in the development of the mammary gland and in breast cancer is well known, but the influence of estrogen on the stem cell population has not been assessed. We show that estrogen reduces the proportion of stem cells in the normal human mammary gland and in breast cancer cells. The embryonic stem cell genes NANOG, OCT4, and SOX2 are expressed in normal breast stem cells and at higher levels in breast tumor cells and their expression decreases upon differentiation. Overexpression of each stem cell gene reduces estrogen receptor (ER) expression, and increases the number of stem cells and their capacity for invasion, properties associated with tumorigenesis and poor prognosis. These results indicate that estrogen reduces the size of the human breast stem cell pool and may provide an explanation for the better prognosis of ER-positive tumors.


Estrogen Mammary gland Stem cells Breast cancer 



We thank the participating women for their willingness to cooperate with our study. We also thank Robert Kypta (CIC bioGUNE) for NTera2/D1 cells and critical reading of the manuscript, present and past members of the laboratory for help and discussions, and James Sutherland (CIC bioGUNE) for help and advice. This work was supported by grants from the ‘Spanish Ministry of Education and Science’, the ‘Institute of Health Carlos III’, the ‘Department of Education of the Government of the Autonomous Community of the Basque Country’, the ‘Department of Industry, Tourism and Trade’ (Etortek), and ‘Department of Innovation Technology of the Government of the Autonomous Community of the Basque Country’ to MV; ‘Foundation for Science and Technology of the Portuguese Ministry of Science, Technology and Higher Education’ to BMS; ‘Foundation La Caixa’ to MV and MP; ‘Department of Education of the Government of the Autonomous Community of the Basque Country’ to OI.

Supplementary material

10549_2010_1169_MOESM1_ESM.pdf (235 kb)
Supplementary material 1 (PDF 239 kb)


  1. 1.
    Bocchinfuso WP, Lindzey JK, Hewitt SC, Clark JA, Myers PH, Cooper R, Korach KS (2000) Induction of mammary gland development in estrogen receptor-alpha knockout mice. Endocrinology 141(8):2982–2994PubMedCrossRefGoogle Scholar
  2. 2.
    Ali S, Coombes RC (2002) Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2(2):101–112PubMedCrossRefGoogle Scholar
  3. 3.
    Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL, Liu ET (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 100(18):10393–10398PubMedCrossRefGoogle Scholar
  4. 4.
    van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009PubMedCrossRefGoogle Scholar
  5. 5.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874PubMedCrossRefGoogle Scholar
  6. 6.
    Dontu G, El-Ashry D, Wicha MS (2004) Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab 15(5):193–197PubMedCrossRefGoogle Scholar
  7. 7.
    LaMarca HL, Rosen JM (2008) Minireview: hormones and mammary cell fate—what will I become when I grow up? Endocrinology 149(9):4317–4321PubMedCrossRefGoogle Scholar
  8. 8.
    Clayton H, Titley I, Vivanco M (2004) Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp Cell Res 297(2):444–460PubMedCrossRefGoogle Scholar
  9. 9.
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270PubMedCrossRefGoogle Scholar
  10. 10.
    Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65(13):5506–5511PubMedCrossRefGoogle Scholar
  11. 11.
    Farnie G, Clarke RB, Spence K, Pinnock N, Brennan K, Anderson NG, Bundred NJ (2007) Novel cell culture technique for primary ductal carcinoma in situ: Role of notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst 99(8):616–627PubMedCrossRefGoogle Scholar
  12. 12.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988PubMedCrossRefGoogle Scholar
  13. 13.
    Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M, Halushka MK, Sukumar S, Parker LM, Anderson KS, Harris LN, Garber JE, Richardson AL, Schnitt SJ, Nikolsky Y, Gelman RS, Polyak K (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11(3):259–273PubMedCrossRefGoogle Scholar
  14. 14.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) Aldh1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567PubMedCrossRefGoogle Scholar
  15. 15.
    Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY (2008) Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2(4):333–344PubMedCrossRefGoogle Scholar
  16. 16.
    Niwa H (2007) How is pluripotency determined and maintained? Development 134(4):635–646PubMedCrossRefGoogle Scholar
  17. 17.
    Surani MA, Hayashi K, Hajkova P (2007) Genetic and epigenetic regulators of pluripotency. Cell 128(4):747–762PubMedCrossRefGoogle Scholar
  18. 18.
    Riekstina U, Cakstina I, Parfejevs V, Hoogduijn M, Jankovskis G, Muiznieks I, Muceniece R, Ancans J (2009) Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev Rep 5(4):378–386CrossRefGoogle Scholar
  19. 19.
    Ling TY, Kuo MD, Li CL, Yu AL, Huang YH, Wu TJ, Lin YC, Chen SH, Yu J (2006) Identification of pulmonary oct-4 + stem/progenitor cells and demonstration of their susceptibility to sars coronavirus (sars-cov) infection in vitro. Proc Natl Acad Sci USA 103(25):9530–9535PubMedCrossRefGoogle Scholar
  20. 20.
    Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40(5):499–507PubMedCrossRefGoogle Scholar
  21. 21.
    Gascoyne DM, Hixon ML, Gualberto A, Vivanco MD (2003) Loss of mitotic spindle checkpoint activity predisposes to chromosomal instability at early stages of fibrosarcoma development. Cell Cycle 2(3):238–245PubMedCrossRefGoogle Scholar
  22. 22.
    Ricketts D, Turnbull L, Ryall G, Bakhshi R, Rawson NS, Gazet JC, Nolan C, Coombes RC (1991) Estrogen and progesterone receptors in the normal female breast. Cancer Res 51(7):1817–1822PubMedGoogle Scholar
  23. 23.
    Vivanco MD, Johnson R, Galante PE, Hanahan D, Yamamoto KR (1995) A transition in transcriptional activation by the glucocorticoid and retinoic acid receptors at the tumor stage of dermal fibrosarcoma development. EMBO J 14(10):2217–2228PubMedGoogle Scholar
  24. 24.
    Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122(6):947–956PubMedCrossRefGoogle Scholar
  25. 25.
    Kok M, Koornstra RH, Margarido TC, Fles R, Armstrong NJ, Linn SC, Van’t Veer LJ, Weigelt B (2009) Mammosphere-derived gene set predicts outcome in patients with er-positive breast cancer. J Pathol 218(3):316–326PubMedCrossRefGoogle Scholar
  26. 26.
    Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat ML, Gyorki DE, Ward T, Partanen A, Feleppa F, Huschtscha LI, Thorne HJ, Fox SB, Yan M, French JD, Brown MA, Smyth GK, Visvader JE, Lindeman GJ (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in brca1 mutation carriers. Nat Med 15(8):907–913PubMedCrossRefGoogle Scholar
  27. 27.
    Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317PubMedCrossRefGoogle Scholar
  28. 28.
    Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent es-cell-like state. Nature 448(7151):318–324PubMedCrossRefGoogle Scholar
  29. 29.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  30. 30.
    Kalmar T, Lim C, Hayward P, Munoz-Descalzo S, Nichols J, Garcia-Ojalvo J, Martinez Arias A (2009) Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol 7(7):e1000149PubMedCrossRefGoogle Scholar
  31. 31.
    Badve S, Nakshatri H (2009) Oestrogen-receptor-positive breast cancer: Towards bridging histopathological and molecular classifications. J Clin Pathol 62(1):6–12PubMedCrossRefGoogle Scholar
  32. 32.
    Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007) Hedgehog-gli1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17(2):165–172PubMedCrossRefGoogle Scholar
  33. 33.
    Rodriguez-Pinilla SM, Sarrio D, Moreno-Bueno G, Rodriguez-Gil Y, Martinez MA, Hernandez L, Hardisson D, Reis-Filho JS, Palacios J (2007) Sox2: a possible driver of the basal-like phenotype in sporadic breast cancer. Mod Pathol 20(4):474–481PubMedCrossRefGoogle Scholar
  34. 34.
    Ezeh UI, Turek PJ, Reijo RA, Clark AT (2005) Human embryonic stem cell genes oct4, nanog, stellar, and gdf3 are expressed in both seminoma and breast carcinoma. Cancer 104(10):2255–2265PubMedCrossRefGoogle Scholar
  35. 35.
    Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, Calhoun-Davis T, Zaehres H, Daley GQ, Tang DG (2009) Functional evidence that the self-renewal gene nanog regulates human tumor development. Stem Cells 27(5):993–1005PubMedCrossRefGoogle Scholar
  36. 36.
    Chen Y, Shi L, Zhang L, Li R, Liang J, Yu W, Sun L, Yang X, Wang Y, Zhang Y, Shang Y (2008) The molecular mechanism governing the oncogenic potential of sox2 in breast cancer. J Biol Chem 283(26):17969–17978PubMedCrossRefGoogle Scholar
  37. 37.
    Liu R, Wang X, Chen GY, Dalerba P, Gurney A, Hoey T, Sherlock G, Lewicki J, Shedden K, Clarke MF (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356(3):217–226PubMedCrossRefGoogle Scholar
  38. 38.
    Shipitsin M, Polyak K (2008) The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab Invest 88(5):459–463PubMedCrossRefGoogle Scholar
  39. 39.
    Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R Jr, Badve S, Nakshatri H (2006) Cd44+/cd24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8(5):R59PubMedCrossRefGoogle Scholar
  40. 40.
    Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H (2005) Prevalence of cd44+/cd24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11(3):1154–1159PubMedGoogle Scholar
  41. 41.
    Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, Houvenaeghel G, Extra JM, Bertucci F, Jacquemier J, Xerri L, Dontu G, Stassi G, Xiao Y, Barsky SH, Birnbaum D, Viens P, Wicha MS (2010) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16(1):45–55Google Scholar
  42. 42.
    Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100(9):672–679PubMedCrossRefGoogle Scholar
  43. 43.
    Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG, Di Fiore PP (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140(1):62–73Google Scholar
  44. 44.
    Vivanco M (2010) Function follows form: defining mammary stem cells. Sci Transl Med 2(31):31ps22Google Scholar
  45. 45.
    Ciarloni L, Mallepell S, Brisken C (2007) Amphiregulin is an essential mediator of estrogen receptor alpha function in mammary gland development. Proc Natl Acad Sci USA 104(13):5455–5460PubMedCrossRefGoogle Scholar
  46. 46.
    LaMarca HL, Rosen JM (2007) Estrogen regulation of mammary gland development and breast cancer: amphiregulin takes center stage. Breast Cancer Res 9(4):304PubMedCrossRefGoogle Scholar
  47. 47.
    Clemons M, Goss P (2001) Estrogen and the risk of breast cancer. N Engl J Med 344(4):276–285PubMedCrossRefGoogle Scholar
  48. 48.
    Lewis-Wambi JS, Jordan VC (2009) Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit? Breast Cancer Res 11(3):206PubMedCrossRefGoogle Scholar
  49. 49.
    Britt K, Ashworth A, Smalley M (2007) Pregnancy and the risk of breast cancer. Endocr Relat Cancer 14(4):907–933PubMedCrossRefGoogle Scholar
  50. 50.
    Polyak K (2006) Pregnancy and breast cancer: the other side of the coin. Cancer Cell 9(3):151–153PubMedCrossRefGoogle Scholar
  51. 51.
    Deroo BJ, Hewitt SC, Collins JB, Grissom SF, Hamilton KJ, Korach KS (2009) Profile of estrogen-responsive genes in an estrogen-specific mammary gland outgrowth model. Mol Reprod Dev 76(8):733–750PubMedCrossRefGoogle Scholar
  52. 52.
    Ellis MJ, Gao F, Dehdashti F, Jeffe DB, Marcom PK, Carey LA, Dickler MN, Silverman P, Fleming GF, Kommareddy A, Jamalabadi-Majidi S, Crowder R, Siegel BA (2009) Lower-dose vs high-dose oral estradiol therapy of hormone receptor-positive, aromatase inhibitor-resistant advanced breast cancer: a phase 2 randomized study. JAMA 302(7):774–780PubMedCrossRefGoogle Scholar
  53. 53.
    Schneider J, Martin-Gutierrez S, Tresguerres JA, Garcia-Velasco JA (2009) Circulating estradiol defines the tumor phenotype in menopausal breast cancer patients. Maturitas 64(1):43–45PubMedCrossRefGoogle Scholar
  54. 54.
    Liu S, Ginestier C, Charafe-Jauffret E, Foco H, Kleer CG, Merajver SD, Dontu G, Wicha MS (2008) Brca1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci USA 105(5):1680–1685PubMedCrossRefGoogle Scholar
  55. 55.
    Kurian AW, McClure LA, John EM, Horn-Ross PL, Ford JM, Clarke CA (2009) Second primary breast cancer occurrence according to hormone receptor status. J Natl Cancer Inst 101(15):1058–1065PubMedCrossRefGoogle Scholar
  56. 56.
    Zhou L, Jiang Y, Yan T, Di G, Shen Z, Shao Z, Lu J (2010) The prognostic role of cancer stem cells in breast cancer: a meta-analysis of published literatures. Breast Cancer Res Treat 122(3):795–801Google Scholar
  57. 57.
    Rajkumar L, Kittrell FS, Guzman RC, Brown PH, Nandi S, Medina D (2007) Hormone-induced protection of mammary tumorigenesis in genetically engineered mouse models. Breast Cancer Res 9(1):R12PubMedCrossRefGoogle Scholar
  58. 58.
    Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, Yasuda H, Smyth GK, Martin TJ, Lindeman GJ, Visvader JE (2010) Control of mammary stem cell function by steroid hormone signalling. Nature 465(7299):798–802Google Scholar
  59. 59.
    Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL, Stingl J, Waterhouse PD, Khokha R (2010) Progesterone induces adult mammary stem cell expansion. Nature 465(7299):803–807Google Scholar
  60. 60.
    Britt KL, Kendrick H, Regan JL, Molyneux G, Magnay FA, Ashworth A, Smalley MJ (2009) Pregnancy in the mature adult mouse does not alter the proportion of mammary epithelial stem/progenitor cells. Breast Cancer Res 11(2):R20PubMedCrossRefGoogle Scholar
  61. 61.
    Siwko SK, Dong J, Lewis MT, Liu H, Hilsenbeck SG, Li Y (2008) Evidence that an early pregnancy causes a persistent decrease in the number of functional mammary epithelial stem cells—implications for pregnancy-induced protection against breast cancer. Stem Cells 26(12):3205–3209PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Bruno M. Simões
    • 1
  • Marco Piva
    • 1
  • Oihana Iriondo
    • 1
  • Valentine Comaills
    • 1
  • Jose A. López-Ruiz
    • 2
  • Iñaki Zabalza
    • 3
  • Jon A. Mieza
    • 4
  • Olga Acinas
    • 5
  • Maria d.M. Vivanco
    • 1
  1. 1.Cell Biology and Stem Cells UnitCIC bioGUNEDerioSpain
  2. 2.Servicio de Radiodiagnostico PreteimagenBilbaoSpain
  3. 3.Department of PathologyGaldakao-Usansolo HospitalGaldakaoSpain
  4. 4.Gynecological Institute DeustoBilbaoSpain
  5. 5.Pathological AnatomySierrallana HospitalTorrelavegaSpain

Personalised recommendations