Advertisement

Breast Cancer Research and Treatment

, Volume 128, Issue 3, pp 657–666 | Cite as

The TGF-β/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system

  • Eliza Wiercinska
  • Hildegonda P. H. Naber
  • Evangelia Pardali
  • Gabri van der Pluijm
  • Hans van Dam
  • Peter ten DijkeEmail author
Preclinical study

Abstract

Transforming growth factor-β (TGF-β) has opposing roles in breast cancer progression by acting as a tumor suppressor in the initial phase, but stimulating invasion and metastasis at later stages. In contrast to the mechanisms by which TGF-β induces growth arrest, the pathways that mediate tumor invasion are not well understood. Here, we describe a TGF-β-dependent invasion assay system consisting of spheroids of MCF10A1 normal breast epithelial cells (M1) and RAS-transformed (pre-)malignant derivatives (M2 and M4) embedded in collagen gels. Both basal and TGF-β-induced invasion of these cell lines was found to correlate with their tumorigenic potential; M4 showing the most aggressive behavior and M1 showing the least. Basal invasion was strongly inhibited by the TGF-β receptor kinase inhibitor SB-431542, indicating the involvement of autocrine TGF-β or TGF-β-like activity. TGF-β-induced invasion in premalignant M2 and highly malignant M4 cells was also inhibited upon specific knockdown of Smad3 or Smad4. Interestingly, both a broad spectrum matrix metalloproteinase (MMP) inhibitor and a selective MMP2 and MMP9 inhibitor mitigated TGF-β-induced invasion of M4 cells, while leaving basal invasion intact. In line with this, TGF-β was found to strongly induce MMP2 and MMP9 expression in a Smad3- and Smad4-dependent manner. This collagen-embedded spheroid system therefore offers a valuable screening model for TGF-β/Smad- and MMP2- and MMP9-dependent breast cancer invasion.

Keywords

Invasion Matrix metalloproteinase Spheroids MCF10A Smad TGF-β 

Notes

Acknowledgments

We thank our colleagues, in particular Lukas Hawinkels, for valuable discussion and help during experiments. We are grateful to Niek Henriquez, Petra van Overveld, and Geertje van der Horst for their help to set up the invasion assay. We thank Ed Leof (Mayo Clinic, Minnesota, USA) and Ken Iwata (OSI Pharmaceuticals, New York, USA), for reagents; Fred Miller (Barbara Ann Karmanos Cancer Institute, Detroit, USA) for the cell lines. This study was supported by the Dutch Cancer Society (RUL 2005-3371), European Union Framework 6 grant BRECOSM (5032240) and Tumor Host Genomics (518198), Centre for Biomedical Genetics, Swedish Cancerfonden (09 0773), and Ludwig Institute for Cancer Research.

Conflict of interest

None.

Supplementary material

10549_2010_1147_MOESM1_ESM.jpg (92 kb)
Supplementary material 1 (JPEG 91 kb)
10549_2010_1147_MOESM2_ESM.jpg (174 kb)
Supplementary material 2 (JPEG 173 kb)
10549_2010_1147_MOESM3_ESM.jpg (3.5 mb)
Supplementary material 3 (JPEG 3547 kb)
10549_2010_1147_MOESM4_ESM.doc (63 kb)
Supplementary material 4 (DOC 63 kb)

References

  1. 1.
    Massagué J (2008) TGFβ in cancer. Cell 134:215–230. doi: 10.1016/j.cell.2008.07.001 PubMedCrossRefGoogle Scholar
  2. 2.
    Akhurst RJ, Derynck R (2001) TGF-β signaling in cancer—a double-edged sword. Trends Cell Biol 11:S44–S51. doi: 10.1016/S0962-8924(01)02130-4 PubMedGoogle Scholar
  3. 3.
    Ghellal A, Li C, Hayes M, Byrne G, Bundred N, Kumar S (2000) Prognostic significance of TGFβ1 and TGFβ3 in human breast carcinoma. Anticancer Res 20:4413–4418PubMedGoogle Scholar
  4. 4.
    Sheen-Chen SM, Chen HS, Sheen CW, Eng HL, Chen WJ (2001) Serum levels of transforming growth factor β1 in patients with breast cancer. Arch Surg 136:937–940PubMedCrossRefGoogle Scholar
  5. 5.
    Ivanovic V, Todorovic-Rakovic N, Demajo M, Neskovic-Konstantinovic Z, Subota V, Ivanisevic-Milovanovic O, Nikolic-Vukosavljevic D (2003) Elevated plasma levels of transforming growth factor-β1 (TGF-β1) in patients with advanced breast cancer: association with disease progression. Eur J Cancer 39:454–461. doi: 10.1016/S0959-8049(02)00502-6 PubMedCrossRefGoogle Scholar
  6. 6.
    Desruisseau S, Palmari J, Giusti C, Romain S, Martin PM, Berthois Y (2006) Determination of TGFβ1 protein level in human primary breast cancers and its relationship with survival. Br J Cancer 94:239–246. doi: 10.1038/sj.bjc.6602920 PubMedCrossRefGoogle Scholar
  7. 7.
    ten Dijke P, Hill CS (2004) New insights into TGF-β-Smad signalling. Trends Biochem Sci 29:265–273. doi: 10.1016/j.tibs.2004.03.008 PubMedCrossRefGoogle Scholar
  8. 8.
    Moustakas A, Heldin CH (2009) The regulation of TGFβ signal transduction. Development 136:3699–3714. doi: 10.1242/dev.030338 PubMedCrossRefGoogle Scholar
  9. 9.
    Chen CR, Kang Y, Massagué J (2001) Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor β growth arrest program. Proc Natl Acad Sci USA 98:992–999PubMedCrossRefGoogle Scholar
  10. 10.
    Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 371:257–261. doi: 10.1038/371257a0 PubMedCrossRefGoogle Scholar
  11. 11.
    Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF (1995) Transforming growth factor β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 92:5545–5549PubMedCrossRefGoogle Scholar
  12. 12.
    Levy L, Hill CS (2006) Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev 17:41–58. doi: 10.1016/j.cytogfr.2005.09.009 PubMedCrossRefGoogle Scholar
  13. 13.
    Gomis RR, Alarcon C, Nadal C, Van PC, Massagué J (2006) C/EBPβ at the core of the TGFβ cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell 10:203–214. doi: 10.1016/j.ccr.2006.07.019 PubMedCrossRefGoogle Scholar
  14. 14.
    Wakefield LM, Piek E, Bottinger EP (2001) TGF-beta signaling in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia 6:67–82. doi: 10.1023/A:1009568532177 PubMedCrossRefGoogle Scholar
  15. 15.
    Dumont N, Arteaga CL (2000) Transforming growth factor-β and breast cancer: tumor promoting effects of transforming growth factor-β. Breast Cancer Res 2:125–132. doi: 10.1186/bcr44 PubMedCrossRefGoogle Scholar
  16. 16.
    ten Dijke P, Goumans MJ, Itoh F, Itoh S (2002) Regulation of cell proliferation by Smad proteins. J Cell Physiol 191:1–16. doi: 10.1002/jcp.10066 PubMedCrossRefGoogle Scholar
  17. 17.
    Deckers M, van DM, Buijs J, Que I, Lowik C, van der Pluijm G, ten Dijke P (2006) The tumor suppressor Smad4 is required for transforming growth factor β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 66:2202–2209. doi: 10.1158/0008-5472.CAN-05-3560 PubMedCrossRefGoogle Scholar
  18. 18.
    Viloria-Petit AM, David L, Jia JY, Erdemir T, Bane AL, Pinnaduwage D, Roncari L, Narimatsu M, Bose R, Moffat J, Wong JW, Kerbel RS, O’Malley FP, Andrulis IL, Wrana JL (2009) A role for the TGFβ-Par6 polarity pathway in breast cancer progression. Proc Natl Acad Sci USA 106:14028–14033. doi: 10.1073/pnas.0906796106 PubMedCrossRefGoogle Scholar
  19. 19.
    Xu J, Lamouille S, Derynck R (2009) TGF-β-induced epithelial to mesenchymal transition. Cell Res 19:156–172. doi: 10.1038/cr.2009.5 PubMedCrossRefGoogle Scholar
  20. 20.
    Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284:67–68. doi: 10.1038/284067a0 PubMedCrossRefGoogle Scholar
  21. 21.
    Weigelt B, Peterse JL, van’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602. doi: 10.1038/nrc1670 PubMedCrossRefGoogle Scholar
  22. 22.
    Overall CM, Kleifeld O (2006) Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6:227–239. doi: 10.1038/nrc1821 PubMedCrossRefGoogle Scholar
  23. 23.
    Soule HD, Maloney TM, Wolman SR, Peterson WD Jr, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC (1990) Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 50:6075–6086PubMedGoogle Scholar
  24. 24.
    Strickland LB, Dawson PJ, Santner SJ, Miller FR (2000) Progression of premalignant MCF10AT generates heterogeneous malignant variants with characteristic histologic types and immunohistochemical markers. Breast Cancer Res Treat 64:235–240. doi: 10.1023/A:1026562720218 PubMedCrossRefGoogle Scholar
  25. 25.
    Santner SJ, Dawson PJ, Tait L, Soule HD, Eliason J, Mohamed AN, Wolman SR, Heppner GH, Miller FR (2001) Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res Treat 65:101–110. doi: 10.1023/A:1006461422273 PubMedCrossRefGoogle Scholar
  26. 26.
    Kim ES, Kim MS, Moon A (2004) TGF-β-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells. Int J Oncol 25:1375–1382PubMedGoogle Scholar
  27. 27.
    Miyazono K (2009) Transforming growth factor-β signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci 85:314–323. doi: 10.2183/pjab.85.314 PubMedCrossRefGoogle Scholar
  28. 28.
    Smalley KS, Lioni M, Herlyn M (2006) Life isn’t flat: taking cancer biology to the next dimension. In Vitro Cell Dev Biol Anim 42:242–247. doi: 10.1290/0604027.1 PubMedCrossRefGoogle Scholar
  29. 29.
    Lin RZ, Chang HY (2008) Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 3:1172–1184. doi: 10.1002/biot.200700228 PubMedCrossRefGoogle Scholar
  30. 30.
    Ohmori T, Yang JL, Price JO, Arteaga CL (1998) Blockade of tumor cell transforming growth factor-βs enhances cell cycle progression and sensitizes human breast carcinoma cells to cytotoxic chemotherapy. Exp Cell Res 245:350–359. doi: 10.1006/excr.1998.4261 PubMedCrossRefGoogle Scholar
  31. 31.
    Graham CH, Kobayashi H, Stankiewicz KS, Man S, Kapitain SJ, Kerbel RS (1994) Rapid acquisition of multicellular drug resistance after a single exposure of mammary tumor cells to antitumor alkylating agents. J Natl Cancer Inst 86:975–982PubMedCrossRefGoogle Scholar
  32. 32.
    Petersen M, Pardali E, van der Horst G, Cheung H, van den Hoogen C, van der Pluijm G, ten Dijke P (2010) Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene 29:1351–1361. doi: 10.1038/onc.2009.426 PubMedCrossRefGoogle Scholar
  33. 33.
    Tang B, Vu M, Booker T, Santner SJ, Miller FR, Anver MR, Wakefield LM (2003) TGF-β switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 112:1116–1124. doi: 10.1172/JCI18899 PubMedGoogle Scholar
  34. 34.
    Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62:65–74. doi: 10.1124/mol.62.1.65 PubMedCrossRefGoogle Scholar
  35. 35.
    Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, Manova-Todorova K, Blasberg R, Gerald WL, Massagué J (2005) Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA 102:13909–13914. doi: 10.1073/pnas.0506517102 PubMedCrossRefGoogle Scholar
  36. 36.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174. doi: 10.1038/nrc745 PubMedCrossRefGoogle Scholar
  37. 37.
    van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536. doi: 10.1038/415530a CrossRefGoogle Scholar
  38. 38.
    Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massagué J (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524. doi: 10.1038/nature03799 PubMedCrossRefGoogle Scholar
  39. 39.
    Tamura Y, Watanabe F, Nakatani T, Yasui K, Fuji M, Komurasaki T, Tsuzuki H, Maekawa R, Yoshioka T, Kawada K, Sugita K, Ohtani M (1998) Highly selective and orally active inhibitors of type IV collagenase (MMP-9 and MMP-2): N-sulfonylamino acid derivatives. J Med Chem 41:640–649. doi: 10.1021/jm9707582 PubMedCrossRefGoogle Scholar
  40. 40.
    Cowell JK, Laduca J, Rossi MR, Burkhardt T, Nowak NJ, Matsui S (2005) Molecular characterization of the t(3;9) associated with immortalization in the MCF10A cell line. Cancer Genet Cytogenet 163:23–29. doi: 10.1016/j.cancergencyto.2005.04.019 PubMedCrossRefGoogle Scholar
  41. 41.
    Kadota M, Yang HH, Gomez B, Sato M, Clifford RJ, Meerzaman D, Dunn BK, Wakefield LM, Lee MP (2010) Delineating genetic alterations for tumor progression in the MCF10A series of breast cancer cell lines. PLoS One 5:e9201. doi: 10.1371/journal.pone.0009201 PubMedCrossRefGoogle Scholar
  42. 42.
    Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG, Keely PJ (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6:11. doi: 10.1186/1741-7015-6-11 PubMedCrossRefGoogle Scholar
  43. 43.
    Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54. doi: 10.1038/ng1060 PubMedCrossRefGoogle Scholar
  44. 44.
    Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ (1992) Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci USA 89:9064–9068PubMedCrossRefGoogle Scholar
  45. 45.
    Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30:256–268. doi: 10.1016/S1046-2023(03)00032-X PubMedCrossRefGoogle Scholar
  46. 46.
    Li Q, Mullins SR, Sloane BF, Mattingly RR (2008) p21-Activated kinase 1 coordinates aberrant cell survival and pericellular proteolysis in a three-dimensional culture model for premalignant progression of human breast cancer. Neoplasia 10:314–329. doi: 10.1593/neo.07970 PubMedGoogle Scholar
  47. 47.
    Li Q, Chow AB, Mattingly RR (2010) Three-dimensional overlay culture models of human breast cancer reveal a critical sensitivity to mitogen-activated protein kinase kinase inhibitors. J Pharmacol Exp Ther 332:821–828. doi: 10.1124/jpet.109.160390 PubMedCrossRefGoogle Scholar
  48. 48.
    Garamszegi N, Garamszegi SP, Samavarchi-Tehrani P, Walford E, Schneiderbauer MM, Wrana JL, Scully SP (2010) Extracellular matrix-induced transforming growth factor-beta receptor signaling dynamics. Oncogene 29:2368–2380. doi: 10.1038/onc.2009.514 PubMedCrossRefGoogle Scholar
  49. 49.
    Incorvaia L, Badalamenti G, Rini G, Arcara C, Fricano S, Sferrazza C, Di TD, Gebbia N, Leto G (2007) MMP-2, MMP-9 and activin A blood levels in patients with breast cancer or prostate cancer metastatic to the bone. Anticancer Res 27:1519–1525PubMedGoogle Scholar
  50. 50.
    Strizzi L, Postovit LM, Margaryan NV, Seftor EA, Abbott DE, Seftor RE, Salomon DS, Hendrix MJ (2008) Emerging roles of nodal and Cripto-1: from embryogenesis to breast cancer progression. Breast Dis 29:91–103PubMedGoogle Scholar
  51. 51.
    Adkins HB, Bianco C, Schiffer SG, Rayhorn P, Zafari M, Cheung AE, Orozco O, Olson D, De LA, Chen LL, Miatkowski K, Benjamin C, Normanno N, Williams KP, Jarpe M, LePage D, Salomon D, Sanicola M (2003) Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo. J Clin Invest 112:575–587. doi: 10.1172/JCI17788 PubMedGoogle Scholar
  52. 52.
    Dzwonek J, Preobrazhenska O, Cazzola S, Conidi A, Schellens A, van DM, Stubbs A, Klippel A, Huylebroeck D, ten Dijke P, Verschueren K (2009) Smad3 is a key nonredundant mediator of transforming growth factor β signaling in Nme mouse mammary epithelial cells. Mol Cancer Res 7:1342–1353. doi: 10.1158/1541-7786.MCR-08-0558 PubMedCrossRefGoogle Scholar
  53. 53.
    Tian F, Byfield SD, Parks WT, Stuelten CH, Nemani D, Zhang YE, Roberts AB (2004) Smad-binding defective mutant of transforming growth factor β type I receptor enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 64:4523–4530. doi: 10.1158/0008-5472.CAN-04-0030 PubMedCrossRefGoogle Scholar
  54. 54.
    Tian F, DaCosta BS, Parks WT, Yoo S, Felici A, Tang B, Piek E, Wakefield LM, Roberts AB (2003) Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 63:8284–8292PubMedGoogle Scholar
  55. 55.
    Stetler-Stevenson WG (1994) Progelatinase A activation during tumor cell invasion. Invasion Metastasis 14:259–268PubMedGoogle Scholar
  56. 56.
    Coussens LM, Tinkle CL, Hanahan D, Werb Z (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103:481–490. doi: 10.1016/S0092-8674(00)00139-2 PubMedCrossRefGoogle Scholar
  57. 57.
    Safina A, Vandette E, Bakin AV (2007) ALK5 promotes tumor angiogenesis by upregulating matrix metalloproteinase-9 in tumor cells. Oncogene 26:2407–2422. doi: 10.1038/sj.onc.1210046 PubMedCrossRefGoogle Scholar
  58. 58.
    Tester AM, Waltham M, Oh SJ, Bae SN, Bills MM, Walker EC, Kern FG, Stetler-Stevenson WG, Lippman ME, Thompson EW (2004) Pro-matrix metalloproteinase-2 transfection increases orthotopic primary growth and experimental metastasis of MDA-MB-231 human breast cancer cells in nude mice. Cancer Res 64:652–658PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Eliza Wiercinska
    • 1
  • Hildegonda P. H. Naber
    • 1
  • Evangelia Pardali
    • 1
  • Gabri van der Pluijm
    • 2
  • Hans van Dam
    • 1
  • Peter ten Dijke
    • 1
    • 3
    Email author
  1. 1.Department of Molecular Cell Biology and Centre for Biomedical GeneticsLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Department of Urology and EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
  3. 3.Ludwig Institute for Cancer Research and Uppsala UniversityUppsalaSweden

Personalised recommendations