Breast Cancer Research and Treatment

, Volume 128, Issue 2, pp 327–336 | Cite as

Accumulation of mutations over the entire mitochondrial genome of breast cancer cells obtained by tissue microdissection

  • Liane Fendt
  • Harald Niederstätter
  • Gabriela Huber
  • Bettina Zelger
  • Martina Dünser
  • Christof Seifarth
  • Alexander Röck
  • Georg Schäfer
  • Helmut Klocker
  • Walther Parson
Preclinical study

Abstract

The occurrence of heteroplasmy and mixtures is technically challenging for the analysis of mitochondrial DNA. More than that, observed mutations need to be carefully interpreted in the light of the phylogeny as mitochondrial DNA is a uniparental marker reflecting human evolution. Earlier attempts to explain the role of mtDNA in cancerous tissues led to substantial confusion in medical genetics mainly due to the presentation of low sequence data quality and misinterpretation of mutations representing a particular haplogroup background rather than being cancer-specific. The focus of this study is to characterize the extent and level of mutations in breast cancer samples obtained by tissue microdissection by application of an evaluated full mtDNA genome sequencing protocol. We amplified and sequenced the complete mitochondrial genomes of microdissected breast cancer cells of 15 patients and compared the results to those obtained from paired non-cancerous breast tissue derived from the same patients. We observed differences in the heteroplasmic states of substitutions between cancerous and normal cells, one of which was affecting a position that has been previously reported in lung cancer and another one that has been identified in 16 epithelial ovarian tumors, possibly indicating functional relevance. In the coding region, we found full transitions in two cancerous mitochondrial genomes and 12 heteroplasmic substitutions as compared to the non-cancerous breast cells. We identified somatic mutations over the entire mtDNA of human breast cancer cells potentially impairing the mitochondrial OXPHOS system.

Keywords

Mitochondrial DNA Breast cancer Mutation Microdissection Phylogeny 

Abbreviations

mtDNA

Mitochondrial DNA

LCM

Laser capture microdissection

ND

NADH dehydrogenase

CO

Cytochrome oxidase

Cytb

Cytochrome b

OXPHOS

Oxidative phosphorylation

Supplementary material

10549_2010_1092_MOESM1_ESM.doc (32 kb)
Supplementary material 1 (DOC 32 kb)

References

  1. 1.
    Warburg O (1956) On the origin of cancer cells. Science 123:309–314PubMedCrossRefGoogle Scholar
  2. 2.
    Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases aging and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407PubMedCrossRefGoogle Scholar
  3. 3.
    Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25:4647–4662PubMedCrossRefGoogle Scholar
  4. 4.
    Bianchi NO, Bianchi MS, Richard SM (2001) Mitochondrial genome instability in human cancers. Mutat Res 488:9–23PubMedCrossRefGoogle Scholar
  5. 5.
    Santos C, Martínez M, Lima M, Hao YJ, Simoes N, Montiel R (2008) Mitochondrial DNA mutations in cancer: a review. Curr Top Med Chem 8:1351–1366PubMedCrossRefGoogle Scholar
  6. 6.
    Salas A, Yao YG, Macaulay V, Vega A, Carracedo A, Bandelt HJ (2005) A critical reassessment of the role of mitochondria in tumorigenesis. PLoS Med 2:e296PubMedCrossRefGoogle Scholar
  7. 7.
    Chen D, Zhan H (2009) Study on the mutations in the D-loop region of mitochondrial DNA in cervical carcinoma. J Cancer Res Clin Oncol 135:291–295PubMedCrossRefGoogle Scholar
  8. 8.
    HeY, Wu J, Dressman DC, Iacobuzio-Donahue C, Markowitz SD, Velculescu VE, Diaz Jr LA, Kinzler KW, Vogelstein B, Papadopoulos N (2010) Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature. doi:10.1038/nature08802
  9. 9.
    van Oven M, Kayser M (2008) Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 1039:e386–e394Google Scholar
  10. 10.
    Wang CY, Wang HW, Yao YG, Kong QP, Zhang YP (2007) Somatic mutations of mitochondrial genome in early stage breast cancer. Int J Cancer 121:1253–1256PubMedCrossRefGoogle Scholar
  11. 11.
    Coller HA, Khrapko K, Bodyak ND, Nekhaeva E, Herrero-Jimenez P, Thilly WG (2001) High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nat Genet 28:147–150PubMedCrossRefGoogle Scholar
  12. 12.
    Maximo V, Lima J, Soares P, Sobrinho-Simoes M (2009) Mitochondria and cancer. Virchows Arch 454:481–495PubMedCrossRefGoogle Scholar
  13. 13.
    Beerenwinkel N, Antal T, Dingli D, Traulsen A, Kinzler KW, Velculescu VE, Vogelstein B, Nowak MA (2007) Genetic progression and the waiting time to cancer. PLoS Comput Biol 3:e225PubMedCrossRefGoogle Scholar
  14. 14.
    Bandelt HJ, Salas A, Bravi CM (2006) What is a ‘novel’ mtDNA mutation—and does ‘novelty’ really matter? J Hum Genet 51:1073–1082PubMedCrossRefGoogle Scholar
  15. 15.
    Fendt L, Zimmermann B, Daniaux M, Parson W (2009) Sequencing strategy for the whole mitochondrial genome resulting in high quality sequences. BMC Genomics 10:139PubMedCrossRefGoogle Scholar
  16. 16.
    Niederstätter H, Köchl S, Grubwieser P, Pavlic M, Steinlechner M, Parson W (2007) A modular real-time PCR concept for determining the quantity and quality of human nuclear and mitochondrial DNA. Forensic Sci Int Genet 1:29–34PubMedCrossRefGoogle Scholar
  17. 17.
    Parson W, Bandelt HJ (2007) Extended guidelines of mtDNA typing of population data in forensic science. Forensic Sci Int Genet 1:13–19PubMedCrossRefGoogle Scholar
  18. 18.
    Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465PubMedCrossRefGoogle Scholar
  19. 19.
    Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147PubMedCrossRefGoogle Scholar
  20. 20.
    Carracedo A, Bär W, Lincoln P, Mayr W, Morling N, Olaisen B, Schneider P, Budowle B, Brinkmann B, Gill P, Holland M, Tully G, Wilson M (2000) DNA Commission of the International Society for Forensic Genetics: guidelines for mitochondrial DNA typing. Forensic Sci Int 110:79–85PubMedCrossRefGoogle Scholar
  21. 21.
    Tully G, Bär W, Brinkmann B, Carracedo A, Gill P, Morling N, Parson W, Schneider P (2001) Considerations by the European DNA profiling (EDNAP) group on the working practices nomenclature and interpretation of mitochondrial DNA profiles. Forensic Sci Int 124:83–91PubMedCrossRefGoogle Scholar
  22. 22.
    Bandelt HJ, Parson W (2007) Consistent treatment of length variants in the human mtDNA control region: a reappraisal. Int J Legal Med 122:11–21PubMedCrossRefGoogle Scholar
  23. 23.
    Irwin JA, Saunier JL, Niederstätter H, Strouss KM, Sturk KA, Diegoli TM, Brandstätter A, Parson W, Parsons TJ (2009) Investigation of heteroplasmy in the human mitochondrial DNA control region: a synthesis of observations from more than 5000 global population samples. J Mol Evol 68:516–527PubMedCrossRefGoogle Scholar
  24. 24.
    Malyarchuk BA, Derenko MV (1999) Molecular instability of the mitochondrial haplogroup T sequences at nucleotide positions 16292 and 16296. Ann Hum Genet 63:489–497PubMedCrossRefGoogle Scholar
  25. 25.
    Bandelt HJ, Kong QP, Richards M, Macaulay V (2006) Estimation of mutation rates and coalescence times: some caveats. In: Bandelt HJ, Macaulay V, Richards M (eds) Human mitochondrial DNA and the evolution of Homo sapiens. Springer, Berlin, pp 47–90Google Scholar
  26. 26.
    Bandelt HJ, Quintana-Murci L, Salas A, Macaulay V (2002) The fingerprint of phantom mutations in mitochondrial DNA data. Am J Hum Genet 71:1150–1160PubMedCrossRefGoogle Scholar
  27. 27.
    Vernesi C, Fuselli S, Castrí L, Bertorelle G, Barbujani G (2002) Mitochondrial diversity in linguistic isolates of the Alps: a reappraisal. Hum Biol 74:725–730PubMedCrossRefGoogle Scholar
  28. 28.
    Achilli A, Rengo C, Magri C, Battaglia V, Olivieri A, Scozzari R, Cruciani F, Zeviani M, Briem E, Carelli V, Moral P, Dugoujon JM, Roostalu U, Loogväli EL, Kivisild T, Bandelt HJ, Richards M, Villems R, Santachiara-Benerecetti AS, Semino O, Torroni A (2004) The molecular dissection of mtDNA haplogroup H confirms that the Franco-Cantabrian glacial refuge was a major source for the European gene pool. Am J Hum Genet 75:910–918PubMedCrossRefGoogle Scholar
  29. 29.
    Kassauei K, Habbe N, Mullendore ME, Karikari CA, Maitra A, Feldmann G (2006) Mitochondrial DNA mutations in pancreatic cancer. Int J Gastrointest Cancer 37:57–64PubMedCrossRefGoogle Scholar
  30. 30.
    Zhu W, Qin W, Bradley P, Wessel A, Puckett CL, Sauter ER (2005) Mitochondrial DNA mutations in breast cancer tissue and in matched nipple aspirate fluid. Carcinogenesis 26:145–152PubMedCrossRefGoogle Scholar
  31. 31.
    Rosson D, Keshgegian AA (2004) Frequent mutations in the mitochondrial control region DNA in breast tissue. Cancer Lett 215:89–94PubMedCrossRefGoogle Scholar
  32. 32.
    Tan DJ, Bai RK, Wong LJ (2002) Comprehensive scanning of somatic mitochondrial DNA mutations in breast cancer. Cancer Res 62:972–976PubMedGoogle Scholar
  33. 33.
    Parrella P, Xiao Y, Fliss M, Sanchez-Cespedes M, Mazzarelli P, Rinaldi M, Nicol T, Gabrielson E, Cuomo C, Cohen D, Pandit S, Spencer M, Rabitti C, Fazio VM, Sidransky D (2001) Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates. Cancer Res 61:7623–7626PubMedGoogle Scholar
  34. 34.
    Singh KK, Ayyasamy V, Owens KM, Koul MS, Vujcic M (2009) Mutations in mitochondrial DNA polymerase-gamma promote breast tumorigenesis. J Hum Genet 54:516–524PubMedCrossRefGoogle Scholar
  35. 35.
    Tzen CY, Mau BL, Wu TY (2007) ND4 mutation in transitional cell carcinoma: does mitochondrial mutation occur before tumorigenesis? Mitochondrion 7:273–278PubMedCrossRefGoogle Scholar
  36. 36.
    Park JS, Sharma LK, Li H, Xiang R, Holstein D, Wu J, Lechleiter J, Naylor SL, Deng JJ, Lu J, Bai Y (2009) A heteroplasmic not homoplasmic mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum Mol Genet 18:1578–1589PubMedCrossRefGoogle Scholar
  37. 37.
    Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, Lim S, Issa MM, Flanders WD, Hosseini SH, Marshall FF, Wallace DC (2005) mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA 102:719–724PubMedCrossRefGoogle Scholar
  38. 38.
    Aikhionbare FO, Mehrabi S, Kumaresan K, Zavareh M, Olatinwo M, Odunsi K, Partridge E (2007) Mitochondrial DNA sequence variants in epithelial ovarian tumor subtypes and stages. J Carcinog 6:1PubMedCrossRefGoogle Scholar
  39. 39.
    Lorenc A, Bryk J, Golik P, Kupryjanczyk J, Ostrowski J, Pronicki M, Semczuk A, Szolkowska M, Bartnik E (2003) Homoplasmic MELAS A3243G mtDNA mutation in a colon cancer sample. Mitochondrion 3:119–124PubMedCrossRefGoogle Scholar
  40. 40.
    Vega A, Salas A, Gamborino E, Sobrido MJ, Macaulay V, Carracedo A (2004) mtDNA mutations in tumors of the central nervous system reflect the neutral evolution of mtDNA in populations. Oncogene 23:1314–1320PubMedCrossRefGoogle Scholar
  41. 41.
    Rothfuss O, Gasser T, Patenge N (2009) Analysis of differential DNA damage in the mitochondrial genome employing a semi-long run real-time PCR approach. Nucleic Acids Res. doi: 10.1093/nar/gkp1082
  42. 42.
    Gasparre G, Porcelli AM, Bonora E, Pennisi LF, Toller M, Iommarini L, Ghelli A, Moretti M, Betts CM, Martinelli GN, Ceroni AR, Curcio F, Carelli V, Rugolo M, Tallini G, Romeo G (2007) Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc Natl Acad Sci USA 104:9001–9006PubMedCrossRefGoogle Scholar
  43. 43.
    Gasparre G, Hervouet E, de LE, Demont J, Pennisi LF, Colombel M, Mege-Lechevallier F, Scoazec JY, Bonora E, Smeets R, Smeitink J, Lazar V, Lespinasse J, Giraud S, Godinot C, Romeo G, Simonnet H (2008) Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum Mol Genet 17:986–995PubMedCrossRefGoogle Scholar
  44. 44.
    Zhidkov I, Livneh EA, Rubin E, Mishmar D (2009) mtDNA mutation pattern in tumors and human evolution are shaped by similar selective constraints. Genome Res 19:576–580PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Liane Fendt
    • 1
  • Harald Niederstätter
    • 1
  • Gabriela Huber
    • 1
  • Bettina Zelger
    • 2
  • Martina Dünser
    • 4
  • Christof Seifarth
    • 2
  • Alexander Röck
    • 5
  • Georg Schäfer
    • 3
  • Helmut Klocker
    • 3
  • Walther Parson
    • 1
  1. 1.Institute of Legal MedicineInnsbruck Medical UniversityInnsbruckAustria
  2. 2.Institute of PathologyInnsbruck Medical UniversityInnsbruckAustria
  3. 3.Experimental UrologyInnsbruck Medical UniversityInnsbruckAustria
  4. 4.Department of Operative MedicineInnsbruck Medical UniversityInnsbruckAustria
  5. 5.Institute of MathematicsUniversity of InnsbruckInnsbruckAustria

Personalised recommendations