Breast Cancer Research and Treatment

, Volume 126, Issue 1, pp 157–165 | Cite as

Genetic variants in COX-2, non-steroidal anti-inflammatory drugs, and breast cancer risk: the Western New York Exposures and Breast Cancer (WEB) Study

  • Theodore M. Brasky
  • Matthew R. Bonner
  • Kirsten B. Moysich
  • Heather M. Ochs-Balcom
  • Catalin Marian
  • Christine B. Ambrosone
  • Jing Nie
  • Meng Hua Tao
  • Stephen B. Edge
  • Maurizio Trevisan
  • Peter G. Shields
  • Jo L. Freudenheim


Chronic inflammation has been consistently associated with cancers of several sites, including the breast, and inhibition of inflammation through the use of non-steroidal anti-inflammatory drugs (NSAIDs) has been inversely associated with risk. As NSAIDs bind with cyclooxygenase-2 (COX-2), genetic variation in COX-2 may influence breast cancer risk by affecting inflammatory response and response to NSAID use. We identified eight single nucleotide polymorphisms (SNPs) for COX-2 and examined their association with risk of breast cancer in a population-based case–control study in Western New York. Cases had incident, first primary, histologically confirmed breast cancer (n = 1077). Controls (n = 1910) were randomly selected from NY Department of Motor Vehicles records (<65) or Medicare rolls (≥65). Participants were queried on adult lifetime use of aspirin and recent use of ibuprofen. Unconditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (95% CI). One SNP, rs2745559, was associated with an increased risk of breast cancer (OR 1.23, 95% CI 1.03–1.46). Associations with other variants were not evident. Significant interaction (P interaction = 0.04) between recent aspirin use and rs4648261 was also observed. Variation in COX-2 was modestly associated with breast cancer risk, indicating that COX-2 may play a role in breast carcinogenesis. Better understanding of the role of COX-2 genetic variation and interaction with NSAID use in breast carcinogenesis has potential to inform prevention strategies.


Breast cancer Cyclooxygenase-2 Non-steroidal anti-inflammatory drugs Prostaglandinendoperoxide synthase 2 Single nucleotide polymorphism 



This work was supported in part by grants DAMD-17-03-1-0446 and DAMD-17-96-1-6202 from the U.S. Department of Defense Breast Cancer Research Program, and NCI RO1CA92040, NIAAA P50-AA09802, K05CA154337, and R25-CA94880 from the National Institutes of Health. Dr. Ambrosone is a recipient of funding from the Breast Cancer Research Foundation.


  1. 1.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867 (see comment)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Takkouche B, Regueira-Méndez C, Etminan M (2008) Breast cancer and use of nonsteroidal anti-inflammatory drugs: a meta-analysis. J Natl Cancer Inst 100:1420–1423CrossRefGoogle Scholar
  3. 3.
    Brasky TM, Bonner MR, Moysich KB, Ambrosone CB, Nie J, Tao MH, Edge SB, Kallakury BV, Marian C, Trevisan M, Shields PG, Freudenheim JL (2010) Non-steroidal anti-inflammatory drug (NSAID) use and breast cancer risk in the Western New York Exposures and Breast Cancer (WEB) Study. Cancer Causes Control. doi:10.1007/s10552-010-9579-5
  4. 4.
    Kosaka T, Miyata A, Ihara H, Hara S, Sugimoto T, Takeda O, Takahashi E, Tanabe T (1994) Characterization of the human gene (PTGS2) encoding prostaglandin-endoperoxide synthase 2. Eur J Biochem 221:889–897CrossRefPubMedGoogle Scholar
  5. 5.
    Howe LR (2007) Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res 9:210CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Half E, Tang XM, Gwyn K, Sahin A, Wathen K, Sinicrope FA (2002) Cyclooxygenase-2 expression in human breast cancers and adjacent ductal carcinoma in situ. Cancer Res 62:1676–1681PubMedGoogle Scholar
  7. 7.
    Hwang D, Scollard D, Byrne J, Levine E (1998) Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer. J Natl Cancer Inst 90:455–460CrossRefPubMedGoogle Scholar
  8. 8.
    Leo C, Faber S, Hentschel B, Hockel M, Horn L-C (2006) The status of cyclooxygenase-2 expression in ductal carcinoma in situ lesions and invasive breast cancer correlates to cyclooxygenase-2 expression in normal breast tissue. Ann Diagn Pathol 10:327–332CrossRefPubMedGoogle Scholar
  9. 9.
    Abraham JE, Harrington P, Driver KE, Tyrer J, Easton DF, Dunning AM, Pharoah PD (2009) Common polymorphisms in the prostaglandin pathway genes and their association with breast cancer susceptibility and survival. Clin Cancer Res 15:2181–2191CrossRefPubMedGoogle Scholar
  10. 10.
    Cox DG, Buring J, Hankinson SE, Hunter DJ (2007) A polymorphism in the 3′ untranslated region of the gene encoding prostaglandin endoperoxide synthase 2 is not associated with an increase in breast cancer risk: a nested case-control study. Breast Cancer Res 9:R3CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gallicchio L, McSorley MA, Newschaffer CJ, Thuita LW, Huang H-Y, Hoffman SC, Helzlsouer KJ (2006) Nonsteroidal antiinflammatory drugs, cyclooxygenase polymorphisms, and the risk of developing breast carcinoma among women with benign breast disease. Cancer 106:1443–1452CrossRefPubMedGoogle Scholar
  12. 12.
    Gao J, Ke Q, Ma H-X, Wang Y, Zhou Y, Hu Z-B, Zhai X-J, Wang X-C, Qing J-W, Chen W-S, Jin G-F, Liu J-Y, Tan Y-F, Wang X-R, Shen H-B (2007) Functional polymorphisms in the cyclooxygenase 2 (COX-2) gene and risk of breast cancer in a Chinese population. J Toxicol Environ Health A 70:908–915CrossRefPubMedGoogle Scholar
  13. 13.
    Langsenlehner U, Yazdani-Biuki B, Eder T, Renner W, Wascher TC, Paulweber B, Weitzer W, Samonigg H, Krippl P (2006) The cyclooxygenase-2 (PTGS2) 8473T>C polymorphism is associated with breast cancer risk. Clin Cancer Res 12:1392–1394CrossRefPubMedGoogle Scholar
  14. 14.
    Moorman PG, Sesay J, Nwosu V, Kane JG, de Cotret AR, Worley K, Millikan R (2005) Cyclooxygenase 2 polymorphism (Val511Ala), nonsteroidal anti-inflammatory drug use and breast cancer in African American women. Cancer Epidemiol Biomarkers Prev 14:3013–3014CrossRefPubMedGoogle Scholar
  15. 15.
    Shen J, Gammon MD, Terry MB, Teitelbaum SL, Neugut AI, Santella RM (2006) Genetic polymorphisms in the cyclooxygenase-2 gene, use of nonsteroidal anti-inflammatory drugs, and breast cancer risk. Breast Cancer Res 8:R71CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Vogel U, Christensen J, Nexo BA, Wallin H, Friis S, Tjonneland A (2007) Peroxisome profilerator-activated receptorgamma2 Pro12Ala, interaction with alcohol intake and NSAID use, in relation to risk of breast cancer in a prospective study of Danes. Carcinogenesis 28:427–434CrossRefPubMedGoogle Scholar
  17. 17.
    Li F, Ren G-S, Li HY, Wang XY, Chen L, Li J (2009) A novel single nucleotide polymorphism of the cyclooxygenase-2 gene associated with breast cancer. Clin Oncol 21:302–305CrossRefGoogle Scholar
  18. 18.
    Dossus L, Kaaks R, Canzian F, Albanes D, Berndt SI, Boeing H, Buring J, Chanock SJ, Clavel-Chapelon F, Feigelson HS, Gaziano JM, Giovannucci E, Gonzalez C, Haiman CA, Hallmans G, Hankinson SE, Hayes RB, Henderson BE, Hoover RN, Hunter DJ, Khaw KT, Kolonel LN, Kraft P, Ma J, Le Marchand L, Lund E, Peeters PH, Stampfer M, Stram DO, Thomas G, Thun MJ, Tjonneland A, Trichopoulos D, Tumino R, Riboli E, Virtamo J, Weinstein SJ, Yeager M, Ziegler RG, Cox DG (2009) PTGS2 and IL6 genetic variation and risk of breast and prostate cancer: results from the Breast and Prostate Cancer Cohort Consortium (BPC3). Carcinogenesis 31(3):455–461CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Burke A, Smyth E, FitzGerald GA (2006) Analgesic-antipyretic agents: pharmacotherapy of gout. In: Brunton LL, Lazlo JS, Parker KL (eds) Goodman & Gilman’s the pharmacological basis of therapeutics, 11th edn. McGraw-Hill, New York, pp 671–716Google Scholar
  20. 20.
    Bonner MR, Han D, Nie J, Rogerson P, Vena JE, Muti P, Trevisan M, Edge SB, Freudenheim JL (2005) Breast cancer risk and exposure in early life to polycyclic aromatic hydrocarbons using total suspended particulates as a proxy measure. Cancer Epidemiol Biomarkers Prev 14:53–60PubMedGoogle Scholar
  21. 21.
    Bonner MR, Nie J, Han D, Vena JE, Rogerson P, Muti P, Trevisan M, Edge SB, Freudenheim JL (2005) Secondhand smoke exposure in early life and the risk of breast cancer among never smokers (United States). Cancer Causes Control 16:683–689CrossRefPubMedGoogle Scholar
  22. 22.
    McCann SE, Ip C, Ip MM, McGuire MK, Muti P, Edge SB, Trevisan M, Freudenheim JL (2004) Dietary intake of conjugated linoleic acids and risk of premenopausal and postmenopausal breast cancer, Western New York Exposures and Breast Cancer Study (WEB Study). Cancer Epidemiol Biomarkers Prev 13:1480–1484PubMedGoogle Scholar
  23. 23.
    Han D, Nie J, Bonner MR, McCann SE, Muti P, Trevisan M, Ramirez-Marrero FA, Vito D, Freudenheim JL (2006) Lifetime adult weight gain, central adiposity, and the risk of pre- and postmenopausal breast cancer in the Western New York exposures and breast cancer study. Int J Cancer 119:2931–2937CrossRefPubMedGoogle Scholar
  24. 24.
    Hersh EV, Moore PA, Ross GL (2000) Over-the-counter analgesics and antipyretics: a critical assessment. Clin Ther 22:500–548CrossRefPubMedGoogle Scholar
  25. 25.
    International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao H, Zhao H, Zhou J, Gabriel SB, Barry R, Blumenstiel B, Camargo A, Defelice M, Faggart M, Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin M, Roy J, Stahl E, Winchester E, Ziaugra L, Altshuler D, Shen Y, Yao Z, Huang W, Chu X, He Y, Jin L, Liu Y, Shen Y, Sun W, Wang H, Wang Y, Wang Y, Xiong X, Xu L, Waye MMY, Tsui SKW, Xue H, Wong JT-F, Galver LM, Fan J-B, Gunderson K, Murray SS, Oliphant AR, Chee MS, Montpetit A, Chagnon F, Ferretti V, Leboeuf M, Olivier J-F, Phillips MS, Roumy S, Sallee C, Verner A, Hudson TJ, Kwok P-Y, Cai D, Koboldt DC, Miller RD, Pawlikowska L, Taillon-Miller P, Xiao M, Tsui L-C, Mak W, Song YQ, Tam PKH, Nakamura Y, Kawaguchi T, Kitamoto T, Morizono T, Nagashima A et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861CrossRefGoogle Scholar
  26. 26.
    de Bakker PIW, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D (2005) Efficiency and power in genetic association studies. Nat Genet 37:1217–1223 (see comment)CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang X, Miao X, Tan W, Ning B, Liu Z, Hong Y, Song W, Guo Y, Zhang X, Shen Y, Qiang B, Kadlubar FF, Lin D (2005) Identification of functional genetic variants in cyclooxygenase-2 and their association with risk of esophageal cancer. Gastroenterology 129:565–576PubMedGoogle Scholar
  28. 28.
    Papafili A, Hill MR, Brull DJ, McAnulty RJ, Marshall RP, Humphries SE, Laurent GJ (2002) Common promoter variant in cyclooxygenase-2 represses gene expression: evidence of role in acute-phase inflammatory response. Arterioscler Thromb Vasc Biol 22:1631–1636 (see comment)CrossRefPubMedGoogle Scholar
  29. 29.
    Dudbridge F (2003) Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 25:115–121CrossRefPubMedGoogle Scholar
  30. 30.
    Zhu W, Wei B, Shan X (2010) 765>C and 8473T>C polymorphisms of COX-2 and cancer risk: a meta-analysis based on 33 case–control studies. Mol Biol Rep 37:277–288CrossRefPubMedGoogle Scholar
  31. 31.
    Cheng I, Liu X, Plummer SJ, Krumroy LM, Casey G, Witte JS (2007) COX2 genetic variation, NSAIDs, and advanced prostate cancer risk. Br J Cancer 97:557–561CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Fritsche E, Baek SJ, King LM, Zeldin DC, Eling TE, Bell DA (2001) Functional characterization of cyclooxygenase-2 polymorphisms. J Pharmacol Exp Ther 299:468–476PubMedGoogle Scholar
  33. 33.
    Dixon DA (2004) Dysregulated post-transcriptional control of COX-2 gene expression in cancer. Curr Pharm Des 10:635–646CrossRefPubMedGoogle Scholar
  34. 34.
    Cok SJ, Morrison AR (2001) The 3′-untranslated region of murine cyclooxygenase-2 contains multiple regulatory elements that alter message stability and translational efficiency. J Biol Chem 276:23179–23185CrossRefPubMedGoogle Scholar
  35. 35.
    Wacholder S, Rothman N, Caporaso N (2000) Population stratification in epidemiologic studies of common genetic variants and cancer: quantification of bias. J Natl Cancer Inst 92:1151–1158 (see comment)CrossRefPubMedGoogle Scholar
  36. 36.
    Wacholder S, Hartge P, Lubin JH, Dosemeci M (1995) Non-differential misclassification and bias towards the null: a clarification. Occup Environ Med 52:557–558 (see comment)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Morimoto LM, White E, Newcomb PA (2003) Selection bias in the assessment of gene–environment interaction in case–control studies. Am J Epidemiol 158:259–263CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Theodore M. Brasky
    • 1
    • 6
  • Matthew R. Bonner
    • 1
  • Kirsten B. Moysich
    • 2
  • Heather M. Ochs-Balcom
    • 1
  • Catalin Marian
    • 3
  • Christine B. Ambrosone
    • 2
  • Jing Nie
    • 1
  • Meng Hua Tao
    • 1
  • Stephen B. Edge
    • 4
  • Maurizio Trevisan
    • 5
  • Peter G. Shields
    • 3
  • Jo L. Freudenheim
    • 1
  1. 1.Department of Social and Preventive Medicine, School of Public Health and Health ProfessionsUniversity at BuffaloBuffaloUSA
  2. 2.Department of Cancer Prevention and ControlRoswell Park Cancer InstituteBuffaloUSA
  3. 3.Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonUSA
  4. 4.Department of SurgeryRoswell Park Cancer InstituteBuffaloUSA
  5. 5.Nevada System of Higher EducationLas VegasUSA
  6. 6.Fred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations