Breast Cancer Research and Treatment

, Volume 125, Issue 3, pp 827–835 | Cite as

RAD51 135G/C polymorphism and breast cancer risk: a meta-analysis from 21 studies

  • Lin-Bo Gao
  • Xin-Min Pan
  • Li-Juan Li
  • Wei-Bo Liang
  • Yi Zhu
  • Lu-Shun Zhang
  • Yong-Gang Wei
  • Ming Tang
  • Lin Zhang
Epidemiology

Abstract

Growing evidence suggests that RAD51 plays a pivotal role in the repair of DNA double-strand breaks and the maintenance of genomic stability. A single nucleotide polymorphism, 135G/C, has been identified in the 5′ untranslated region of the RAD51 gene and has been shown to influence gene transcription activity. Previous studies yielded conflicting results as to the association of 135G/C polymorphism with breast cancer. We aimed to assess the effect of 135G/C of RAD51 on breast cancer susceptibility with the use of a meta-analysis. We performed a meta-analysis of 21 published case–control studies up to April 2010. We found that the CC genotype was associated with a significantly increased risk of breast cancer when compared with the GG, CG, and CG/GG genotypes. Subgroup analyses showed that individuals carrying the CC genotype were associated with an elevated tumor risk in European populations and in sporadic breast cancer. After stratified analyses according to manuscript quality, the CC genotype was associated with a significantly increased risk of breast cancer compared with the CG genotype in studies of both higher and lower quality. However, significantly elevated risk was found in studies of higher quality, but not in studies of lower quality when homozygote and a recessive comparison model were tested. This meta-analysis indicates that RAD51 135G/C polymorphism may be identified as a susceptibility locus for breast cancer.

Keywords

RAD51 Single nucleotide polymorphism Breast cancer Meta-analysis 

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 30901720, 30801317).

Conflict of interest statement

None of the authors has any potential financial conflict of interest related to this manuscript.

References

  1. 1.
    World, Health and Organization. Breast cancer: prevention and control. No. 1: CancerGoogle Scholar
  2. 2.
    World, Health and Organization Fact sheet No. 297: CancerGoogle Scholar
  3. 3.
    Ahlgren M, Melbye M, Wohlfahrt J, Sorensen TI (2004) Growth patterns and the risk of breast cancer in women. N Engl J Med 351:1619–1626CrossRefPubMedGoogle Scholar
  4. 4.
    Lacey JV Jr, Kreimer AR, Buys SS, Marcus PM, Chang SC, Leitzmann MF, Hoover RN, Prorok PC, Berg CD, Hartge P (2009) Breast cancer epidemiology according to recognized breast cancer risk factors in the prostate, lung, colorectal and ovarian (PLCO) cancer screening trial cohort. BMC Cancer 9:84PubMedGoogle Scholar
  5. 5.
    Baumann P, West SC (1998) Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends Biochem Sci 23:247–251CrossRefPubMedGoogle Scholar
  6. 6.
    Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254CrossRefPubMedGoogle Scholar
  7. 7.
    Kato M, Yano K, Matsuo F, Saito H, Katagiri T, Kurumizaka H, Yoshimoto M, Kasumi F, Akiyama F, Sakamoto G, Nagawa H, Nakamura Y, Miki Y (2000) Identification of Rad51 alteration in patients with bilateral breast cancer. J Hum Genet 45:133–137CrossRefPubMedGoogle Scholar
  8. 8.
    Wang WW, Spurdle AB, Kolachana P, Bove B, Modan B, Ebbers SM, Suthers G, Tucker MA, Kaufman DJ, Doody MM, Tarone RE, Daly M, Levavi H, Pierce H, Chetrit A, Yechezkel GH, Chenevix-Trench G, Offit K, Godwin AK, Struewing JP (2001) A single nucleotide polymorphism in the 5′ untranslated region of RAD51 and risk of cancer among BRCA1/2 mutation carriers. Cancer Epidemiol Biomarkers Prev 10:955–960PubMedGoogle Scholar
  9. 9.
    Hasselbach L, Haase S, Fischer D, Kolberg HC, Sturzbecher HW (2005) Characterisation of the promoter region of the human DNA-repair gene Rad51. Eur J Gynaecol Oncol 26:589–598PubMedGoogle Scholar
  10. 10.
    Synowiec E, Stefanska J, Morawiec Z, Blasiak J, Wozniak K (2008) Association between DNA damage, DNA repair genes variability and clinical characteristics in breast cancer patients. Mutat Res 648:65–72PubMedGoogle Scholar
  11. 11.
    Sliwinski T, Krupa R, Majsterek I, Rykala J, Kolacinska A, Morawiec Z, Drzewoski J, Zadrozny M, Blasiak J (2005) Polymorphisms of the BRCA2 and RAD51 genes in breast cancer. Breast Cancer Res Treat 94:105–109CrossRefPubMedGoogle Scholar
  12. 12.
    Romanowicz-Makowska H, Smolarz B, Kulig A (2005) Germline BRCA1 mutations and G/C polymorphism in the 5′-untranslated region of the RAD51 gene in Polish women with breast cancer. Pol J Pathol 56:161–165PubMedGoogle Scholar
  13. 13.
    Jara L, Acevedo ML, Blanco R, Castro VG, Bravo T, Gomez F, Waugh E, Peralta O, Cabrera E, Reyes JM, Ampuero S, Gonzalez-Hormazabal P (2007) RAD51 135G>C polymorphism and risk of familial breast cancer in a South American population. Cancer Genet Cytogenet 178:65–69CrossRefPubMedGoogle Scholar
  14. 14.
    Jakubowska A, Gronwald J, Menkiszak J, Gorski B, Huzarski T, Byrski T, Edler L, Lubinski J, Scott RJ, Hamann U (2007) The RAD51 135 G>C polymorphism modifies breast cancer and ovarian cancer risk in Polish BRCA1 mutation carriers. Cancer Epidemiol Biomarkers Prev 16:270–275CrossRefPubMedGoogle Scholar
  15. 15.
    Thakkinstian A, McEvoy M, Minelli C, Gibson P, Hancox B, Duffy D, Thompson J, Hall I, Kaufman J, Leung TF, Helms PJ, Hakonarson H, Halpi E, Navon R, Attia J (2005) Systematic review and meta-analysis of the association between {beta}2-adrenoceptor polymorphisms and asthma: a HuGE review. Am J Epidemiol 162:201–211CrossRefPubMedGoogle Scholar
  16. 16.
    Camargo MC, Mera R, Correa P, Peek RM Jr, Fontham ET, Goodman KJ, Piazuelo MB, Sicinschi L, Zabaleta J, Schneider BG (2006) Interleukin-1beta and interleukin-1 receptor antagonist gene polymorphisms and gastric cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15:1674–1687CrossRefPubMedGoogle Scholar
  17. 17.
    Gao LB, Pan XM, Jia J, Liang WB, Rao L, Xue H, Zhu Y, Li SL, Lv ML, Deng W, Chen TY, Wei YG, Zhang L (2010) IL-8-251A/T polymorphism is associated with decreased cancer risk among population-based studies: evidence from a meta-analysis. Eur J Cancer [Epub ahead of print]Google Scholar
  18. 18.
    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558CrossRefPubMedGoogle Scholar
  19. 19.
    Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748PubMedGoogle Scholar
  20. 20.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188CrossRefPubMedGoogle Scholar
  21. 21.
    Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634PubMedGoogle Scholar
  22. 22.
    Akisik E, Yazici H, Dalay N (2010) ARLTS1, MDM2 and RAD51 gene variations are associated with familial breast cancer. Mol Biol Rep [Epub ahead of print]Google Scholar
  23. 23.
    Blasiak J, Przybylowska K, Czechowska A, Zadrozny M, Pertynski T, Rykala J, Kolacinska A, Morawiec Z, Drzewoski J (2003) Analysis of the G/C polymorphism in the 5′-untranslated region of the RAD51 gene in breast cancer. Acta Biochim Pol 50:249–253PubMedGoogle Scholar
  24. 24.
    Brooks J, Shore RE, Zeleniuch-Jacquotte A, Currie D, Afanasyeva Y, Koenig KL, Arslan AA, Toniolo P, Wirgin I (2008) Polymorphisms in RAD51, XRCC2, and XRCC3 are not related to breast cancer risk. Cancer Epidemiol Biomarkers Prev 17:1016–1019CrossRefPubMedGoogle Scholar
  25. 25.
    Dufloth RM, Costa S, Schmitt F, Zeferino LC (2005) DNA repair gene polymorphisms and susceptibility to familial breast cancer in a group of patients from Campinas, Brazil. Genet Mol Res 4:771–782PubMedGoogle Scholar
  26. 26.
    Wong AK, Pero R, Ormonde PA, Tavtigian SV, Bartel PL (1997) RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J Biol Chem 272:31941–31944CrossRefPubMedGoogle Scholar
  27. 27.
    Galkin VE, Esashi F, Yu X, Yang S, West SC, Egelman EH (2005) BRCA2 BRC motifs bind RAD51-DNA filaments. Proc Natl Acad Sci USA 102:8537–8542CrossRefPubMedGoogle Scholar
  28. 28.
    Wick W, Petersen I, Schmutzler RK, Wolfarth B, Lenartz D, Bierhoff E, Hummerich J, Muller DJ, Stangl AP, Schramm J, Wiestler OD, von Deimling A (1996) Evidence for a novel tumor suppressor gene on chromosome 15 associated with progression to a metastatic stage in breast cancer. Oncogene 12:973–978PubMedGoogle Scholar
  29. 29.
    Gonzalez R, Silva JM, Dominguez G, Garcia JM, Martinez G, Vargas J, Provencio M, Espana P, Bonilla F (1999) Detection of loss of heterozygosity at RAD51, RAD52, RAD54 and BRCA1 and BRCA2 loci in breast cancer: pathological correlations. Br J Cancer 81:503–509CrossRefPubMedGoogle Scholar
  30. 30.
    Yoshikawa K, Ogawa T, Baer R, Hemmi H, Honda K, Yamauchi A, Inamoto T, Ko K, Yazumi S, Motoda H, Kodama H, Noguchi S, Gazdar AF, Yamaoka Y, Takahashi R (2000) Abnormal expression of BRCA1 and BRCA1-interactive DNA-repair proteins in breast carcinomas. Int J Cancer 88:28–36CrossRefPubMedGoogle Scholar
  31. 31.
    Levy-Lahad E, Lahad A, Eisenberg S, Dagan E, Paperna T, Kasinetz L, Catane R, Kaufman B, Beller U, Renbaum P, Gershoni-Baruch R (2001) A single nucleotide polymorphism in the RAD51 gene modifies cancer risk in BRCA2 but not BRCA1 carriers. Proc Natl Acad Sci USA 98:3232–3236CrossRefPubMedGoogle Scholar
  32. 32.
    Romanowicz-Makowska H, Smolarz B, Zadrozny M, Kulig A (2006) Analysis of RAD51 polymorphism and BRCA1 mutations in Polish women with breast cancer. Exp Oncol 28:156–159PubMedGoogle Scholar
  33. 33.
    Dumitrescu RG, Cotarla I (2005) Understanding breast cancer risk—where do we stand in 2005? J Cell Mol Med 9:208–221CrossRefPubMedGoogle Scholar
  34. 34.
    Costa S, Pinto D, Pereira D, Rodrigues H, Cameselle-Teijeiro J, Medeiros R, Schmitt F (2007) DNA repair polymorphisms might contribute differentially on familial and sporadic breast cancer susceptibility: a study on a Portuguese population. Breast Cancer Res Treat 103:209–217CrossRefPubMedGoogle Scholar
  35. 35.
    Easton DF (2002) Familial risks of breast cancer. Breast Cancer Res 4:179–181CrossRefPubMedGoogle Scholar
  36. 36.
    Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P, Bishop DT, Weber B, Lenoir G, Chang-Claude J, Sobol H, Teare MD, Struewing J, Arason A, Scherneck S, Peto J, Rebbeck TR, Tonin P, Neuhausen S, Barkardottir R, Eyfjord J, Lynch H, Ponder BA, Gayther SA, Zelada-Hedman M et al (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The breast cancer linkage consortium. Am J Hum Genet 62:676–689CrossRefPubMedGoogle Scholar
  37. 37.
    Venkitaraman AR (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108:171–182CrossRefPubMedGoogle Scholar
  38. 38.
    Tutt A, Ashworth A (2002) The relationship between the roles of BRCA genes in DNA repair and cancer predisposition. Trends Mol Med 8:571–576CrossRefPubMedGoogle Scholar
  39. 39.
    Wooster R, Weber BL (2003) Breast and ovarian cancer. N Engl J Med 348:2339–2347CrossRefPubMedGoogle Scholar
  40. 40.
    Antoniou AC, Sinilnikova OM, Simard J, Leone M, Dumont M, Neuhausen SL, Struewing JP, Stoppa-Lyonnet D, Barjhoux L, Hughes DJ, Coupier I, Belotti M, Lasset C, Bonadona V, Bignon YJ, Rebbeck TR, Wagner T, Lynch HT, Domchek SM, Nathanson KL, Garber JE, Weitzel J, Narod SA, Tomlinson G, Olopade OI, Godwin A, Isaacs C, Jakubowska A, Lubinski J, Gronwald J, Gorski B, Byrski T, Huzarski T, Peock S, Cook M, Baynes C, Murray A, Rogers M, Daly PA, Dorkins H, Schmutzler RK, Versmold B, Engel C, Meindl A, Arnold N, Niederacher D, Deissler H, Spurdle AB, Chen X, Waddell N, Cloonan N, Kirchhoff T, Offit K, Friedman E, Kaufmann B, Laitman Y, Galore G, Rennert G, Lejbkowicz F, Raskin L, Andrulis IL, Ilyushik E, Ozcelik H, Devilee P, Vreeswijk MPG, Greene MH, Prindiville SA, Osorio A, Benitez J, Zikan M, Szabo CI, Kilpivaara O, Nevanlinna H, Hamann U, Durocher F, Arason A, Couch FJ, Easton DF, Chenevix-Trench G, Chompret A, Bressac-de-Paillerets B, Byrde V, Capoulade C, Lenoir G, Uhrhammer N, Gauthier-Villars M, De Pauw A, Sinilnikova O, Giraud S, Hardouin A, Berthet P, Sobol H, Bourdon V, Eisinger F, Coulet F, Colas C, Soubrier F, Peyrat JP, Fournier J, Vennin P, Adenis C, Nogues C, Lidereau R, Muller D, Fricker JP, Longy M, Toulas C, Guimbaud R, Gladieff L, Feillel V, Leroux D, Dreyfus H, Rebischung C, Olivier-Faivre L, Prieur F, Frenay M, Mazoyer S, Yannoukakos D, Haites N, Gregory H, Morrison P, Cole T, McKeown C, Donaldson A, Paterson J, Gray J, Daly P, Barton D, Porteous M, Steel M, Brewer C, Rankin J, Davidson R, Murday V, Izatt L, Pichert G, Trembath R, Bishop T, Chu C, Ellis I, Evans G, Lalloo F, Shenton A, Mackay J, Robinson A, Ritchie S, Douglas F, Burn J, Side L, Durell S, Eeles R, Cook J, Quarrell O, Hodgson S, Eccles D, Lucassen A (2007) RAD51 135G→C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet 81:1186–1200CrossRefPubMedGoogle Scholar
  41. 41.
    Jakubowska A, Narod SA, Goldgar DE, Mierzejewski M, Masojc B, Nej K, Huzarska J, Byrski T, Gorski B, Lubinski J (2003) Breast cancer risk reduction associated with the RAD51 polymorphism among carriers of the BRCA1 5382insC mutation in Poland. Cancer Epidemiol Biomarkers Prev 12:457–459PubMedGoogle Scholar
  42. 42.
    Hu R, Wei Y, Jiang WJ, Yao WX, Long QM, Zhang JH, Liang Y, Tang XL (2008) Association of polymorphisms of N372H in BRCA2 gene and 135G/C in RAD51 gene and breast cancers. Sichuan Da Xue Xue Bao Yi Xue Ban 39:973–975PubMedGoogle Scholar
  43. 43.
    Lee KM, Choi JY, Kang C, Kang CP, Park SK, Cho H, Cho DY, Yoo KY, Noh DY, Ahn SH, Park CG, Wei Q, Kang D (2005) Genetic polymorphisms of selected DNA repair genes, estrogen and progesterone receptor status, and breast cancer risk. Clin Cancer Res 11:4620–4626CrossRefPubMedGoogle Scholar
  44. 44.
    Chang TW, Wang SM, Guo YL, Tsai PC, Huang CJ, Huang W (2006) Glutathione S-transferase polymorphisms associated with risk of breast cancer in southern Taiwan. Breast 15:754–761CrossRefPubMedGoogle Scholar
  45. 45.
    Kuschel B, Auranen A, McBride S, Novik KL, Antoniou A, Lipscombe JM, Day NE, Easton DF, Ponder BA, Pharoah PD, Dunning A (2002) Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet 11:1399–1407CrossRefPubMedGoogle Scholar
  46. 46.
    Tarasov VA, Aslanyan MM, Tsyrendorzhiyeva ES, Litvinov SS, Gar’kavtseva RF, Altukhov YP (2006) Genetically determined subdivision of human populations with respect to the risk of breast cancer in women. Dokl Biol Sci 406:66–69CrossRefPubMedGoogle Scholar
  47. 47.
    Krupa R, Synowiec E, Pawlowska E, Morawiec Z, Sobczuk A, Zadrozny M, Wozniak K, Blasiak J (2009) Polymorphism of the homologous recombination repair genes RAD51 and XRCC3 in breast cancer. Exp Mol Pathol 87:32–35CrossRefPubMedGoogle Scholar
  48. 48.
    Jakubowska A, Jaworska K, Cybulski C, Janicka A, Szymanska-Pasternak J, Lener M, Narod SA, Lubinski J (2009) Do BRCA1 modifiers also affect the risk of breast cancer in non-carriers? Eur J Cancer 45:837–842CrossRefPubMedGoogle Scholar
  49. 49.
    Kadouri L, Kote-Jarai Z, Hubert A, Durocher F, Abeliovich D, Glaser B, Hamburger T, Eeles RA, Peretz T (2004) A single-nucleotide polymorphism in the RAD51 gene modifies breast cancer risk in BRCA2 carriers, but not in BRCA1 carriers or noncarriers. Br J Cancer 90:2002–2005CrossRefPubMedGoogle Scholar
  50. 50.
    Webb PM, Hopper JL, Newman B, Chen X, Kelemen L, Giles GG, Southey MC, Chenevix-Trench G, Spurdle AB (2005) Double-strand break repair gene polymorphisms and risk of breast or ovarian cancer. Cancer Epidemiol Biomarkers Prev 14:319–323CrossRefPubMedGoogle Scholar
  51. 51.
    Jara L, Dubois K, Gaete D, de Mayo T, Ratkevicius N, Bravo T, Margarit S, Blanco R, Gomez F, Waugh E, Peralta O, Reyes JM, Ibanez G, Gonzalez-Hormazabal P (2010) Variants in DNA double-strand break repair genes and risk of familial breast cancer in a South American population. Breast Cancer Res Treat [Epub ahead of print]Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Lin-Bo Gao
    • 1
  • Xin-Min Pan
    • 2
    • 3
  • Li-Juan Li
    • 3
  • Wei-Bo Liang
    • 3
  • Yi Zhu
    • 3
  • Lu-Shun Zhang
    • 3
  • Yong-Gang Wei
    • 4
  • Ming Tang
    • 5
  • Lin Zhang
    • 1
  1. 1.Laboratory of Molecular Translational MedicineWest China Second University Hospital, Sichuan UniversityChengduPeople’s Republic of China
  2. 2.Department of Forensic PathologyHenan University of Science and TechnologyLuoyangPeople’s Republic of China
  3. 3.Department of Forensic Biology, West China School of Preclinical and Forensic MedicineSichuan UniversityChengduPeople’s Republic of China
  4. 4.Department of General SurgeryWest China Hospital of Sichuan UniversityChengduPeople’s Republic of China
  5. 5.Department of PathologyThe First People’s Hospital of Yunnan ProvinceKunmingPeople’s Republic of China

Personalised recommendations