Breast Cancer Research and Treatment

, Volume 123, Issue 1, pp 171–175 | Cite as

Re-searching anthracycline therapy

Invited Commentary



The authors wish to thank the “Sandro Pitigliani” Foundation, Prato–Italy, the “Associazione Italiana Ricerca Cancro”, Milan–Italy, and the Breast Cancer Research Foundation, New York–U.S.A, for their support of the institutional research program on translational research in breast cancer


  1. 1.
    Pritchard KI, Shepherd LE, O’Malley FP et al (2006) HER2 and responsiveness of breast cancer to adjuvant chemotherapy. N Engl J Med 354:2103–2111CrossRefPubMedGoogle Scholar
  2. 2.
    Bartlett JMS, Munro AF, Cameron DA et al (2008) Type 1 receptor tyrosine kinase profiles identify patients with enhanced benefit from anthracyclines in the BR9601 adjuvant breast cancer chemotherapy trials. J Clin Oncol 26:5027–5035CrossRefPubMedGoogle Scholar
  3. 3.
    De Laurentiis M, Caputo F, Massarelli E et al (2001) HER2 expression and anthracycline effect: results from the Naples GUN3 randomised trial (abstr 133). Proc Am Soc Clin Oncol 20:A133Google Scholar
  4. 4.
    Di Leo A, Gancberg D, Larsimont D et al (2002) HER-2 amplification and topoisomerase II alpha gene aberrations as predictive markers in node-positive breast cancer patients randomly treated either with an anthracycline-based therapy or with cyclophosphamide, methotrexate, and 5-fluorouracil. Clin Cancer Res 8:1107–1116PubMedGoogle Scholar
  5. 5.
    Knoop AS, Knudsen H, Balslev E et al (2005) Retrospective analysis of topoisomerase IIa amplifications and deletions as predictive markers in primary breast cancer patients randomly assigned to cyclophosphamide, methotrexate, and fluorouracil or cyclophosphamide, epirubicin, and fluorouracil. J Clin Oncol 23:7483–7490CrossRefPubMedGoogle Scholar
  6. 6.
    Moliterni A, Menard S, Valagussa P et al (2003) HER2 overexpression and doxorubicin in adjuvant chemotherapy for resectable breast cancer. J Clin Oncol 21:458–462CrossRefPubMedGoogle Scholar
  7. 7.
    Paik S, Bryant J, Tan-Chiu E et al (2000) HER2 and choice of adjuvant chemotherapy for invasive breast cancer: national surgical adjuvant breast and bowel project protocol B-15. J Natl Cancer Inst 92:1991–1998CrossRefPubMedGoogle Scholar
  8. 8.
    Gennari A, Sormani MP, Pronzato P et al (2008) HER-2 status and efficacy of adjuvant anthracyclines in early breast cancer: a pooled analysis of randomized trials. J Natl Cancer Inst 100:14–20CrossRefPubMedGoogle Scholar
  9. 9.
    Desmedt C, Azambuja E, Larsimont D et al (2009) Predicting the efficacy of anthracyclines in breast cancer (BC) patients: results of the neoadjuvant TOP trial (abstract 523). J Clin Oncol 27:15sCrossRefGoogle Scholar
  10. 10.
    O’Malley F, Chia S, Tu D et al (2009) Topoisomerase II alpha and responsiveness of breast cancer to adjuvant chemotherapy. J Natl Cancer Inst 101:644–650CrossRefPubMedGoogle Scholar
  11. 11.
    Slamon D, Eiermann W, Robert N et al (2006) BCIRG 006: 2nd interim analysis phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel (ACT) with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab (ACTH) with docetaxel, carboplatin and trastuzumab (TCH) in Her2neu positive early breast cancer patients (abstract 52). Breast Cancer Res Treat 100:s1Google Scholar
  12. 12.
    Tanner M, Isola J, Wiklund T et al (2006) Topoisomerase IIα gene amplification predicts favorable treatment response to tailored and dose-escalated anthracycline-based adjuvant chemotherapy in HER-2/neu-amplified breast cancer: scandinavian breast cancer group trial 9401. J Clin Oncol 24:2428–2436CrossRefPubMedGoogle Scholar
  13. 13.
    Järvinen TA, Tanner M, Rantanen V et al (2000) Amplification and deletion of topoisomerase II alpha associate with ErbB-2 amplification and affect sensitivity to the topoisomerase II inhibitor doxorubicin in breast cancer. Am J Pathol 156:839–847PubMedGoogle Scholar
  14. 14.
    Bartlett JM, Munro AF, Dunn JA et al (2010) Predictive markers of anthracycline benefit: a prospectively planned analysis of the UK national epirubicin adjuvant trial (NEAT/BR9601). Lancet Oncol 11:266–274CrossRefPubMedGoogle Scholar
  15. 15.
    Harris LN, Broadwater G, Abu-Khalaf M et al (2009) Topoisomerase IIα amplification does not predict benefit from dose-intense cyclophosphamide, doxorubicin, and fluorouracil therapy in HER2-amplified early breast cancer: results of CALGB 8541/150013. J Clin Oncol 21:3430–3436CrossRefGoogle Scholar
  16. 16.
    Tubbs R, Barlow WE, Budd GT et al (2009) Outcome of patients with early-stage breast cancer treated with doxorubicin-based adjuvant chemotherapy as a function of HER2 and TOP2A status. J Clin Oncol 27:3881–3886CrossRefPubMedGoogle Scholar
  17. 17.
    Di Leo A, Isola J, Piette F et al (2008) A meta-analysis of phase III trials evaluating the predictive value of HER2 and topoisomerase II alpha in early breast cancer patients treated with CMF or anthracycline-based adjuvant therapy (abstract 705). Breast Cancer Res Treat 107:24sGoogle Scholar
  18. 18.
    Bartlett JM, Munro A, Desmedt C et al (2009) Duplication of chromosome 17 CEP predicts for anthracycline benefit: a meta-analysis of 4 trials (abstract 4030). Cancer Res 69:24sGoogle Scholar
  19. 19.
    Gunnarsdottir KA, Jensen M, Zahrieh D et al (2010) CEF is superior to CMF for tumours with TOP2A aberrations: a subpopulation treatment effect pattern plot (STEPP) analysis on danish breast cancer cooperative study group 89D. Breast Cancer Res TreatGoogle Scholar
  20. 20.
    Ejlertsen B, Mouridsen HT, Jensen MB et al (2007) Improved outcome from substituting methotrexate with epirubicin: results from a randomised comparison of CMF versus CEF in patients with primary breast cancer. Eur J Cancer 43:877–884CrossRefPubMedGoogle Scholar
  21. 21.
    Nielsen KV, Ejlertsen B, Møller S et al (2008) The value of TOP2A gene copy number variation as a biomarker in breast cancer: update of DBCG trial 89D. Acta Oncol 47:725–734CrossRefPubMedGoogle Scholar
  22. 22.
    McArthur HL, Tan LK, Patil S et al (2009) High resolution representational oligonucleotide microarray analysis (ROMA) suggests that TOPO2 and HER2 coamplification is uncommon in human breast cancer (abstract 2023). Cancer Res 69:2sCrossRefGoogle Scholar
  23. 23.
    Jarvinen TA, Kononen J, Pelto-Huikko M, Isola J (1996) Expression of topoisomerase II alpha is associated with rapid cell proliferation, aneuploidy, and c-erbB2 over expression in breast cancer. Am J Pathol 148:2073–2082PubMedGoogle Scholar
  24. 24.
    Mueller RE, Parkes RK, Andrulis I, O’Malley FP (2004) Amplification of the TOP2A gene does not predict high levels of topoisomerase II alpha protein in human breast tumor samples. Genes Chromosom Cancer 39:288–297CrossRefPubMedGoogle Scholar
  25. 25.
    Tan D, Marchio C, Jones R et al (2008) Triple negative breast cancer: molecular profiling and prognostic impact in adjuvant anthracycline-treated patients. Breast Cancer Res Treat 111:27–44CrossRefPubMedGoogle Scholar
  26. 26.
    Slamon DJ, Mackey J, Robert N et al (2007) Role of anthracycline-based therapy in the adjuvant treatment of breast cancer: efficacy analyses determined by molecular subtypes of the disease (abstract 13). Breast Cancer Res Treat 106:5Google Scholar
  27. 27.
    Bidard FC, Matthieu MC, Chollet P et al (2008) p53 status and efficacy of primary anthracyclines/alkylating agent-based regimen according to breast cancer molecular classes. Ann Oncol 19:1261–1265CrossRefPubMedGoogle Scholar
  28. 28.
    Le Tourneau C, Dettwiler S, Laurence V et al (2007) 47% pathologic complete response rate to anthracyclines-based associated with high cyclophosphamide doses neoadjuvant chemotherapy in basal-like and triple negative breast cancer patients (abstract 4010). Breast Cancer Res Treat 106:s169Google Scholar
  29. 29.
    Mo YY, Beck WT (1997) Heterogeneus expression of DNA topoisomerase II alpha isoforms in tumor cell lines. Oncol Res 9:193–204PubMedGoogle Scholar
  30. 30.
    Oloumi A, MacPhail SH, Johnston PJ et al (2000) Changes in subcellular distribution of topoisomerase II alpha correlate with etoposide resistance in multicell spheroid and xenograft tumours. Cancer Res 60:5747–5753PubMedGoogle Scholar
  31. 31.
    Munro A, Cameron D, Thomas J et al (2009) BUBR1, MAD2: novel markers for predicitng beneift from adjuvant anthracyclines? (abstract 2124). Cancer Res 69:24sGoogle Scholar
  32. 32.
    Rodriguez AA, Rimawi M, Wu M-F et al (2009) A BRCA1-like, 25-gene assay predicts for anthracycline-chemosensitivity in sporadic triple-negative breast cancer (abstract 110). Cancer Res 69:24sCrossRefGoogle Scholar
  33. 33.
    Willemoe GL, Hertel PB, Bartels A et al (2009) Lack of TIMP-1 tumour cell immunoreactivity predicts effect of adjuvant anthracycline-based chemotherapy in patients (n = 647) with primary breast cancer. A danish breast cancer cooperative group study. Eur J Cancer 45:2528–2536CrossRefPubMedGoogle Scholar
  34. 34.
    Ejlertsen B, Jensen MB, Nielsen KV et al (2009) HER2, TOP2A, and TIMP-1 and responsiveness to adjuvant anthracycline-containing chemotherapy in high-risk breast cancer patients. J Clin Oncol 28:984–990CrossRefPubMedGoogle Scholar
  35. 35.
    Potti A, Dressman H, Bild A et al (2006) Genomic signatures to guide the use of chemotherapeutics. Nat Med 12:1294–1300CrossRefPubMedGoogle Scholar
  36. 36.
    Desmedt C (2010) Anthracyclines and topoisomerase II alpha—what is beyond? Proceedings of the European Breast Cancer Conference, BarcelonaGoogle Scholar
  37. 37.
    Farmer P, Bonnefoi H, Anderle P et al (2009) A stroma-related gene signature predicts response to neoadjuvant chemotherapy in breast cancer. Nat Med 15:68–74CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Catherine Oakman
    • 1
  • Erica Moretti
    • 1
  • Angelo Di Leo
    • 1
  1. 1.“Sandro Pitigliani” Medical Oncology Unit, Department of OncologyHospital of Prato, Istituto Toscano TumoriPratoItaly

Personalised recommendations