Breast Cancer Research and Treatment

, Volume 125, Issue 2, pp 473–477 | Cite as

Lack of association between ATM C.1066-6T > G mutation and breast cancer risk: a meta-analysis of 8,831 cases and 4,957 controls

  • Hong Ding
  • Chen Mao
  • Shui-Ming Li
  • Qu Liu
  • Lin Lin
  • Qing Chen


Epidemiological studies have evaluated the association between ATM C.1066-6T > G (IVS10-6T > G) mutation and breast cancer risk. However, the results remain conflicting rather than conclusive. In order to derive a more precise estimation of the relationship, we performed this meta-analysis. Systematic searches of PubMed and Medline databases were performed. A total of 11 studies including 8,831 cases and 4,957 controls were identified. The carrier frequency of the ATM C.1066-6T > G mutation was 0.5% (45/8,831) in patients with breast cancer and 0.7% (38/4,957) in healthy controls. When all the 11 studies were pooled into the meta-analysis, there was no evidence for significant association between C.1066-6T > G mutation and breast cancer risk (OR 0.87, 95% CI 0.55–1.37). In the subgroup analyses by source of controls and family history with BRCA1/2 status, no significant association were found in any subgroup of population. When sensitivity analyses were performed, all the results were not materially altered. In summary, the meta-analysis strongly suggests that ATM C.1066-6T > G mutation is not associated with increased breast cancer risk.


ATM C.1066-6T > G Breast cancer Risk Meta-analysis 



This study was supported by Guangdong province “211” project (Grant No. 201004).


  1. 1.
    Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S, Ashkenazi M, Pecker I, Frydman M, Harnik R, Patanjali SR, Simmons A, Clines GA, Sartiel A, Gatti RA, Chessa L, Sanal O, Lavin MF, Jaspers NG, Taylor AM, Arlett CF, Miki T, Weissman SM, Lovett M, Collins FS, Shiloh Y (1995) A single ataxia-telangiectasia gene with a product similar to PI-3 kinase. Science 268(5218):1749–1753CrossRefPubMedGoogle Scholar
  2. 2.
    Lavin MF, Shiloh Y (1997) The genetic defect in ataxia-telangiectasia. Annu Rev Immunol 15:177–202CrossRefPubMedGoogle Scholar
  3. 3.
    Swift M, Reitnauer P, Morrell D, Chase C (1987) Breast and other cancers in families with ataxia-telangiectasia. N Engl J Med 316(21):1289–1294CrossRefPubMedGoogle Scholar
  4. 4.
    Borresen A, Andersen T, Tretli S, Heilberg A, Moller P (1990) Breast cancer and other cancers in Norwegian families with ataxia-telangiectasia. Genes Chromosom Cancer 2(4):339–340CrossRefPubMedGoogle Scholar
  5. 5.
    Swift M, Morrell D, Massey R, Chase C (1991) Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 325(26):1831–1836CrossRefPubMedGoogle Scholar
  6. 6.
    Athma P, Rappaport R, Swift M (1996) Molecular genotyping shows that ataxia-telangiectasia heterozygotes are predisposed to breast cancer. Cancer Genet Cytogenet 92(2):130–134CrossRefPubMedGoogle Scholar
  7. 7.
    Inskip H, Kinlen L, Taylor A, Woods C, Arlett C (1999) Risk of breast cancer and other cancers in heterozygotes for ataxia telangiectasia. Br J Cancer 79(7–8):1304–1307CrossRefPubMedGoogle Scholar
  8. 8.
    Janin N, Andrieu N, Ossaian K, Lauge A, Croquette M, Griscelli C, Debre M, Bressac-de-Paillertes B, Aurias A, Stoppa-Lyonnet D (1999) Breast cancer risk in ataxia telangiectasia (AT) heterozygotes: haplotype study in French AT families. Br J Cancer 80(7):1042–1045CrossRefPubMedGoogle Scholar
  9. 9.
    Geoffroy-Perez B, Janin N, Ossian K, Lauge A, Croquette MF, Griscelli C, Debre M, Bressac-de-Paillerets B, Aurias A, Stoppa-Lyonnet D, Andrieu N (2001) Cancer risk in heterozygotes for ataxia-telangiectasia. Int J Cancer 93(2):288–293CrossRefPubMedGoogle Scholar
  10. 10.
    Olsen JH, Hahnemann JM, Borresen-Dale AL, Brondum-Nielsen K, Hammarstrom L, Kleinerman R, Kaariainen H, Lonnqvist T, Sankila R, Seersholm N, Tretli S, Yuen J, Boice JD Jr, Tucker M (2001) Cancer in patients with ataxia-telangiectasia and in their relatives in the Nordic countries. J Natl Cancer Inst 93(2):121–127CrossRefPubMedGoogle Scholar
  11. 11.
    Vorechovsky I, Rasio D, Luo L, Monaco C, Hammarstrom L, Webster AD, Zaloudik J, Barbanti-Brodani G, James M, Russo G (1996) The ATM gene and susceptibility to breast cancer: analysis of 38 breast tumors reveals no evidence for mutation. Cancer Res 56(12):2726–2732PubMedGoogle Scholar
  12. 12.
    FitzGerald MG, Bean JM, Hegde SR, Unsal H, MacDonald DJ, Harkin DP, Finkelstein DM, Isselbacher KJ, Haber DA (1997) Heterozygous ATM mutations do not contribute to early onset of breast cancer. Nat Genet 15(3):307–310CrossRefPubMedGoogle Scholar
  13. 13.
    Chen J, Birkholtz GG, Lindblom P, Rubio C, Lindblom A (1998) The role of ataxia-telangiectasia heterozygotes in familial breast cancer. Cancer Res 58(7):1376–1379PubMedGoogle Scholar
  14. 14.
    Tavtigian SV, Oefner PJ, Babikyan D, Hartmann A, Healey S, Le Calvez-Kelm F, Lesueur F, Byrnes GB, Chuang SC, Forey N, Feuchtinger C, Gioia L, Hall J, Hashibe M, Herte B, McKay-Chopin S, Thomas A, Vallée MP, Voegele C, Webb PM, Whiteman DC, Australian Cancer Study, Breast Cancer Family Registries (BCFR), Kathleen Cuningham Foundation Consortium for Research into Familial Aspects of Breast Cancer (kConFab), Sangrajrang S, Hopper JL, Southey MC, Andrulis IL, John EM, Chenevix-Trench G (2009) Rare, evolutionarily unlikely missense substitutions in ATM confer increased risk of breast cancer. Am J Hum Genet 85(4):427–446CrossRefPubMedGoogle Scholar
  15. 15.
    Chenevix-Trench G, Spurdle AB, Gatei M, Kelly H, Marsh A, Chen X, Donn K, Cummings M, Nyholt D, Jenkins MA, Scott C, Pupo GM, Dörk T, Bendix R, Kirk J, Tucker K, McCredie MR, Hopper JL, Sambrook J, Mann GJ, Khanna KK (2002) Dominant negative ATM mutations in breast cancer families. J Natl Cancer Inst 94(3):205–215PubMedGoogle Scholar
  16. 16.
    Broeks A, Urbanus JH, Floore AN, Dahler EC, Klijn JG, Rutgers EJ, Devilee P, Russell NS, van Leeuwen FE, van’t Veer LJ (2000) ATM-heterozygous germline mutations contribute to breast cancer-susceptibility. Am J Hum Genet 66(2):494–500CrossRefPubMedGoogle Scholar
  17. 17.
    Dörk T, Bendix R, Bremer M, Rades D, Klöpper K, Nicke M, Skawran B, Hector A, Yamini P, Steinmann D, Weise S, Stuhrmann M, Karstens JH (2001) Spectrum of ATM gene mutations in a hospital-based series of unselected breast cancer patients. Cancer Res 61(20):7608–7615PubMedGoogle Scholar
  18. 18.
    Lei H, Pospisilova D, Lindblom A, Vorechovsky I (2002) Re: dominant negative ATM mutations in breast cancer families. J Natl Cancer Inst 94(12):951–952PubMedGoogle Scholar
  19. 19.
    Sommer SS, Buzin CH, Jung M, Zheng J, Liu Q, Jeong SJ, Moulds J, Nguyen VQ, Feng J, Bennett WP, Dritschilo A (2002) Elevated frequency of ATM gene missense mutations in breast cancer relative to ethnically matched controls. Cancer Genet Cytogenet 134(1):25–32CrossRefPubMedGoogle Scholar
  20. 20.
    Bernstein JL, Bernstein L, Thompson WD, Lynch CF, Malone KE, Teitelbaum SL, Olsen JH, Anton-Culver H, Boice JD, Rosenstein BS, Borresen-Dale AL, Gatti RA, Concannon P, Haile RW (2003) ATM variants 7271T>G and IVS10-6T>G among women with unilateral and bilateral breast cancer. Br J Cancer 89(8):1513–1516CrossRefPubMedGoogle Scholar
  21. 21.
    Broeks A, Urbanus JH, de Knijff P, Devilee P, Nicke M, Klöpper K, Dörk T, Floore AN, van’t Veer LJ (2003) IVS10-6T>G, an ancient ATM germline mutation linked with breast cancer. Hum Mutat 21(5):521–528CrossRefPubMedGoogle Scholar
  22. 22.
    Lindeman GJ, Hiew M, Visvader JE, Leary J, Field M, Gaff CL, Gardner RJ, Trainor K, Cheetham G, Suthers G, Kirk J (2004) Frequency of the ATM IVS10-6T>G variant in Australian multiple-case breast cancer families. Breast Cancer Res 6(4):401–407CrossRefGoogle Scholar
  23. 23.
    Szabo CI, Schutte M, Broeks A, Houwing-Duistermaat JJ, Thorstenson YR, Durocher F, Oldenburg RA, Wasielewski M, Odefrey F, Thompson D, Floore AN, Kraan J, Klijn JG, van den Ouweland AM, Wagner TM, Devilee P, Simard J, van’t Veer LJ, Goldgar DE, Meijers-Heijboer H (2004) Are ATM mutations 7271T → G and IVS10–6T → G really high-risk breast cancer-susceptibility alleles? Cancer Res 64(3):840–843CrossRefPubMedGoogle Scholar
  24. 24.
    Thompson D, Antoniou AC, Jenkins M, Marsh A, Chen X, Wayne T, Tesoriero A, Milne R, Spurdle A, Thorstenson Y, Southey M, Giles GG, Khanna KK, Sambrook J, Oefner P, Goldgar D, Hopper JL, Easton D, Chenevix-Trench G, KConFab Investigators (2005) Two ATM variants and breast cancer risk. Hum Mutat 25(6):594–595CrossRefPubMedGoogle Scholar
  25. 25.
    Balleine RL, Murali R, Bilous AM, Farshid G, Waring P, Provan P, Byth K, Thorne H, kConFab Investigators, Kirk JA (2006) Histopathological features of breast cancer in carriers of ATM gene variants. Histopathology 49(5):523–532CrossRefPubMedGoogle Scholar
  26. 26.
    Bernstein JL, Teraoka S, Southey MC, Jenkins MA, Andrulis IL, Knight JA, John EM, Lapinski R, Wolitzer AL, Whittemore AS, West D, Seminara D, Olson ER, Spurdle AB, Chenevix-Trench G, Giles GG, Hopper JL, Concannon P (2006) Population-based estimates of breast cancer risks associated with ATM gene variants c.7271T>G and c.1066-6T>G (IVS10-6T>G) from the breast cancer family registry. Hum Mutat 27(11):1122–1128CrossRefPubMedGoogle Scholar
  27. 27.
    Soukupova J, Dundr P, Kleibl Z, Pohlreich P (2008) Contribution of mutations in ATM to breast cancer development in the Czech population. Oncol Rep 19(6):1505–1510PubMedGoogle Scholar
  28. 28.
    Cochran WG (1954) The combination of estimates from different experiments. Biometrics 10(1):101–129CrossRefGoogle Scholar
  29. 29.
    Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748PubMedGoogle Scholar
  30. 30.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188CrossRefPubMedGoogle Scholar
  31. 31.
    Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634PubMedGoogle Scholar
  32. 32.
    Martin A-M, Weber BL (2000) Genetic and hormonal risk factors in breast cancer. J Natl Cancer Inst (Bethesda) 92(14):1126–1135CrossRefGoogle Scholar
  33. 33.
    Goss PE, Sierra S (1998) Current perspectives on radiation-induced breast cancer. J Clin Oncol 16(1):338–347PubMedGoogle Scholar
  34. 34.
    Nathanson KN, Wooster R, Weber BL (2001) Breast cancer genetics: what we know and what we need. Nat Med 7(5):552–556CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Hong Ding
    • 1
  • Chen Mao
    • 2
  • Shui-Ming Li
    • 1
  • Qu Liu
    • 1
  • Lin Lin
    • 1
  • Qing Chen
    • 2
  1. 1.Longgang Center for Disease Control and Prevention of ShenzhenShenzhenChina
  2. 2.Department of Epidemiology, School of Public Health and Tropical MedicineSouthern Medical UniversityGuangzhouChina

Personalised recommendations