Skip to main content

Advertisement

Log in

Hypermethylation of the progesterone receptor A in constitutive antiprogestin-resistant mouse mammary carcinomas

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Most breast carcinomas that are estrogen receptor (ER) and progesterone receptor (PR) positive respond initially to an endocrine therapy, but over time, they develop resistance (acquired hormone resistance). Others, however, fail to respond from the beginning (constitutive resistance). Overcoming hormone resistance is one of the major desirable aims in breast cancer treatment. Using the medroxyprogesterone acetate (MPA)-induced breast cancer mouse model, we have previously demonstrated that antiprogestin-responsive tumors show a higher expression level of PR isoform A (PRA) than PR isoform B (PRB), while tumors with constitutive or acquired resistance show a higher expression level of PRB. The aim of this study was to investigate whether PRA silencing in resistant tumors was due to PRA methylation. The CpG islands located in the PRA promoter and the first exon were studied by methylation-specific PCR (MSP) in six different tumors: two antiprogestin-responsive, two constitutive-resistant, and two with acquired resistance. Only in constitutive-resistant tumors, PRA expression was silenced by DNA methylation. Next, we evaluated the effect of a demethylating agent, 5-aza-2′-deoxycytidine, on PRA expression and antiprogestin responsiveness. In constitutive-resistant tumors, 5-aza-2′-deoxycytidine treatment in vitro and in vivo restored PRA expression and antiprogestin RU-486 responsiveness. Furthermore, high levels of DNA methyltransferase (Dnmts) 1 and 3b were detected in these tumors. In conclusion, our results suggest that methyltransferase inhibitors in combination with antiprogestins may be effective in the treatment of constitutive-resistant carcinomas with a high DNA methyltransferase level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

5azadC:

5-Aza-2′-deoxycytidine

Dnmts:

DNA methyltransferases

E2 :

17-β-Estradiol

ER:

Estrogen receptor

ERα :

ER alpha

FCS:

Fetal calf serum

GR:

Glucocorticoid receptor

H&E:

Hematoxylin and eosin

HPF:

High power field

i.p.:

Intraperitoneal

M:

Methylated

MPA:

Medroxyprogesterone acetate

MSP:

Methylation-specific PCR

PI:

Propidium iodide

PR:

Progesterone receptor

PRA:

PR isoform A

PRB:

PR isoform B

RU-486:

Mifepristone

s.c.:

Subcutaneous

UM:

Unmethylated

References

  1. Santen RJ, Manni A, Harvey H, Redmond C (1990) Endocrine treatment of breast cancer in women. Endocr Rev 11:221–265

    Article  PubMed  CAS  Google Scholar 

  2. Normanno N, Di Maio M, De Maio E, De Luca A, de Matteis A, Giordano A, Perrone F (2005) Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocr Relat Cancer 12:721–747

    Article  PubMed  CAS  Google Scholar 

  3. Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H, Chambon P (1990) Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J 9:1603–1614

    PubMed  CAS  Google Scholar 

  4. Kraus WL, Katzenellenbogen BS (1993) Regulation of progesterone receptor gene expression and growth in the rat uterus: modulation of estrogen actions by progesterone and sex steroid hormone antagonists. Endocrinology 132:2371–2379

    Article  PubMed  CAS  Google Scholar 

  5. Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB (2002) Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem 277:5209–5218

    Article  PubMed  CAS  Google Scholar 

  6. Hopp TA, Weiss HL, Hilsenbeck SG, Cui Y, Allred DC, Horwitz KB, Fuqua SA (2004) Breast cancer patients with progesterone receptor PR-A-rich tumors have poorer disease-free survival rates. Clin Cancer Res 10:2751–2760

    Article  PubMed  CAS  Google Scholar 

  7. Long BJ, Jelovac D, Handratta V, Thiantanawat A, MacPherson N, Ragaz J, Goloubeva OG, Brodie AM (2004) Therapeutic strategies using the aromatase inhibitor letrozole and tamoxifen in a breast cancer model. J Natl Cancer Inst 96:456–465

    Article  PubMed  CAS  Google Scholar 

  8. Macedo LF, Sabnis GJ, Goloubeva OG, Brodie A (2008) Combination of anastrozole with fulvestrant in the intratumoral aromatase xenograft model. Cancer Res 68:3516–3522

    Article  PubMed  CAS  Google Scholar 

  9. Lanari C, Molinolo AA, Pasqualini CD (1986) Induction of mammary adenocarcinomas by medroxyprogesterone acetate in BALB/c female mice. Cancer Lett 33:215–223

    Article  PubMed  CAS  Google Scholar 

  10. Molinolo AA, Lanari C, Charreau EH, Sanjuan N, Pasqualini CD (1987) Mouse mammary tumors induced by medroxyprogesterone acetate: immunohistochemistry and hormonal receptors. J Natl Cancer Inst 79:1341–1350

    PubMed  CAS  Google Scholar 

  11. Lanari C, Lamb CA, Fabris VT, Helguero LA, Soldati R, Bottino MC, Giulianelli S, Cerliani JP, Wargon V, Molinolo A (2009) The MPA mouse breast cancer model: evidence for a role of progesterone receptors in breast cancer. Endocr Relat Cancer 16:333–350

    Article  PubMed  CAS  Google Scholar 

  12. Helguero LA, Viegas M, Asaithamby A, Shyamala G, Lanari C, Molinolo AA (2003) Progesterone receptor expression in medroxyprogesterone acetate-induced murine mammary carcinomas and response to endocrine treatment. Breast Cancer Res Treat 79:379–390

    Article  PubMed  CAS  Google Scholar 

  13. Wargon V, Helguero LA, Bolado J, Rojas P, Novaro V, Molinolo A, Lanari C (2009) Reversal of antiprogestin resistance and progesterone receptor isoform ratio in acquired resistant mammary carcinomas. Breast Cancer Res Treat 116:449–460

    Article  PubMed  CAS  Google Scholar 

  14. Momparler RL, Bovenzi V (2000) DNA methylation and cancer. J Cell Physiol 183:145–154

    Article  PubMed  CAS  Google Scholar 

  15. Palii SS, Van Emburgh BO, Sankpal UT, Brown KD, Robertson KD (2008) DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol Cell Biol 28:752–771

    Article  PubMed  CAS  Google Scholar 

  16. Brinkman JA, El Ashry D (2009) ER re-expression and re-sensitization to endocrine therapies in ER-negative breast cancers. J Mammary Gland Biol Neoplasia 14:67–78

    Article  PubMed  Google Scholar 

  17. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  PubMed  CAS  Google Scholar 

  18. Roll JD, Rivenbark AG, Jones WD, Coleman WB (2008) DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines. Mol Cancer 7:15

    Article  PubMed  Google Scholar 

  19. Ferguson AT, Lapidus RG, Baylin SB, Davidson NE (1995) Demethylation of the estrogen receptor gene in estrogen receptor-negative breast cancer cells can reactivate estrogen receptor gene expression. Cancer Res 55:2279–2283

    PubMed  CAS  Google Scholar 

  20. Ferguson DJ, Anderson TJ (1981) Morphological evaluation of cell turnover in relation to the menstrual cycle in the “resting” human breast. Br J Cancer 44:177–181

    Article  PubMed  CAS  Google Scholar 

  21. Lapidus RG, Ferguson AT, Ottaviano YL, Parl FF, Smith HS, Weitzman SA, Baylin SB, Issa JP, Davidson NE (1996) Methylation of estrogen and progesterone receptor gene 5′ CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors. Clin Cancer Res 2:805–810

    PubMed  CAS  Google Scholar 

  22. Nass SJ, Herman JG, Gabrielson E, Iversen PW, Parl FF, Davidson NE, Graff JR (2000) Aberrant methylation of the estrogen receptor and E-cadherin 5′ CpG islands increases with malignant progression in human breast cancer. Cancer Res 60:4346–4348

    PubMed  CAS  Google Scholar 

  23. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    Article  PubMed  CAS  Google Scholar 

  24. Lapidus RG, Nass SJ, Davidson NE (1998) The loss of estrogen and progesterone receptor gene expression in human breast cancer. J Mammary Gland Biol Neoplasia 3:85–94

    Article  PubMed  CAS  Google Scholar 

  25. Ottaviano YL, Issa JP, Parl FF, Smith HS, Baylin SB, Davidson NE (1994) Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res 54:2552–2555

    PubMed  CAS  Google Scholar 

  26. Yang X, Yan L, Davidson NE (2001) DNA methylation in breast cancer. Endocr Relat Cancer 8:115–127

    Article  PubMed  CAS  Google Scholar 

  27. Institute of Laboratory Animal Resources CoLSNRC (1996) Guide for the care and use of laboratory animals. National Academy Press, Washington, DC

    Google Scholar 

  28. Vanzulli S, Efeyan A, Benavides F, Helguero L, Peters G, Shen J, Conti CJ, Lanari C, Molinolo A (2002) p21, p27 and p53 in estrogen and antiprogestin-induced tumor regression of experimental mouse mammary ductal carcinomas. Carcinogenesis 23:749–757

    Article  PubMed  CAS  Google Scholar 

  29. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89:1827–1831

    Article  PubMed  CAS  Google Scholar 

  30. Hagihara K, Wu-Peng XS, Funabashi T, Kato J, Pfaff DW (1994) Nucleic acid sequence and DNase hypersensitive sites of the 5′ region of the mouse progesterone receptor gene. Biochem Biophys Res Commun 205:1093–1101

    Article  PubMed  CAS  Google Scholar 

  31. Lanari C, Luthy I, Lamb CA, Fabris V, Pagano E, Helguero LA, Sanjuan N, Merani S, Molinolo AA (2001) Five novel hormone-responsive cell lines derived from murine mammary ductal carcinomas: in vivo and in vitro effects of estrogens and progestins. Cancer Res 61:293–302

    PubMed  CAS  Google Scholar 

  32. Giulianelli S, Cerliani JP, Lamb CA, Fabris VT, Bottino MC, Gorostiaga MA, Novaro V, Gongora A, Baldi A, Molinolo A, Lanari C (2008) Carcinoma-associated fibroblasts activate progesterone receptors and induce hormone independent mammary tumor growth: A role for the FGF-2/FGFR-2 axis. Int J Cancer 123:2518–2531

    Article  PubMed  CAS  Google Scholar 

  33. Lamb C, Simian M, Molinolo A, Pazos P, Lanari C (1999) Regulation of cell growth of a progestin-dependent murine mammary carcinoma in vitro: progesterone receptor involvement in serum or growth factor-induced cell proliferation. J Steroid Biochem Mol Biol 70:133–142

    Article  PubMed  CAS  Google Scholar 

  34. Mirza S, Sharma G, Prasad CP, Parshad R, Srivastava A, Gupta SD, Ralhan R (2007) Promoter hypermethylation of TMS1, BRCA1, ERalpha and PRB in serum and tumor DNA of invasive ductal breast carcinoma patients. Life Sci 81:280–287

    Article  PubMed  CAS  Google Scholar 

  35. Leu YW, Yan PS, Fan M, Jin VX, Liu JC, Curran EM, Welshons WV, Wei SH, Davuluri RV, Plass C, Nephew KP, Huang TH (2004) Loss of estrogen receptor signaling triggers epigenetic silencing of downstream targets in breast cancer. Cancer Res 64:8184–8192

    Article  PubMed  CAS  Google Scholar 

  36. Vasilatos SN, Broadwater G, Barry WT, Baker JC Jr, Lem S, Dietze EC, Bean GR, Bryson AD, Pilie PG, Goldenberg V, Skaar D, Paisie C, Torres-Hernandez A, Grant TL, Wilke LG, Ibarra-Drendall C, Ostrander JH, D’Amato NC, Zalles C, Jirtle R, Weaver VM, Seewaldt VL (2009) CpG island tumor suppressor promoter methylation in non-BRCA-associated early mammary carcinogenesis. Cancer Epidemiol Biomarkers Prev 18:901–914

    Article  PubMed  CAS  Google Scholar 

  37. Ferguson AT, Lapidus RG, Davidson NE (1998) Demethylation of the progesterone receptor CpG island is not required for progesterone receptor gene expression. Oncogene 17:577–583

    Article  PubMed  CAS  Google Scholar 

  38. Sharma D, Saxena NK, Davidson NE, Vertino PM (2006) Restoration of tamoxifen sensitivity in estrogen receptor-negative breast cancer cells: tamoxifen-bound reactivated ER recruits distinctive corepressor complexes. Cancer Res 66:6370–6378

    Article  PubMed  CAS  Google Scholar 

  39. Fan J, Yin WJ, Lu JS, Wang L, Wu J, Wu FY, Di GH, Shen ZZ, Shao ZM (2008) ER alpha negative breast cancer cells restore response to endocrine therapy by combination treatment with both HDAC inhibitor and DNMT inhibitor. J Cancer Res Clin Oncol 134:883–890

    Article  PubMed  CAS  Google Scholar 

  40. Pazos P, Lanari C, Meiss R, Charreau EH, Pasqualini CD (1992) Mammary carcinogenesis induced by N-methyl-N-nitrosourea (MNU) and medroxyprogesterone acetate (MPA) in BALB/c mice. Breast Cancer Res Treat 20:133–138

    Article  PubMed  CAS  Google Scholar 

  41. Russo IH, Gimotty P, Dupuis M, Russo J (1989) Effect of medroxyprogesterone acetate on the response of the rat mammary gland to carcinogenesis. Br J Cancer 59:210–216

    Article  PubMed  CAS  Google Scholar 

  42. Aldaz CM, Liao QY, Paladugu A, Rehm S, Wang H (1996) Allelotypic and cytogenetic characterization of chemically induced mouse mammary tumors: high frequency of chromosome 4 loss of heterozygosity at advanced stages of progression. Mol Carcinog 17:126–133

    Article  PubMed  CAS  Google Scholar 

  43. Horwitz KB, Tung L, Takimoto GS (1996) Novel mechanisms of antiprogestin action. Acta Oncol 35:129–140

    Article  PubMed  CAS  Google Scholar 

  44. Hyder SM, Murthy L, Stancel GM (1998) Progestin regulation of vascular endothelial growth factor in human breast cancer cells. Cancer Res 58:392–395

    PubMed  CAS  Google Scholar 

  45. Goepfert TM, McCarthy M, Kittrell FS, Stephens C, Ullrich RL, Brinkley BR, Medina D (2000) Progesterone facilitates chromosome instability (aneuploidy) in p53 null normal mammary epithelial cells. FASEB J 14:2221–2229

    Article  PubMed  CAS  Google Scholar 

  46. Lydon JP, Ge G, Kittrell FS, Medina D, O’Malley BW (1999) Murine mammary gland carcinogenesis is critically dependent on progesterone receptor function. Cancer Res 59:4276–4284

    PubMed  CAS  Google Scholar 

  47. Women’s Health Initiative (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women principal results From the Women’s Health Initiative randomized controlled trial. JAMA 288:321–333

    Article  Google Scholar 

  48. Beral V (2003) Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 362:419–427

    Article  PubMed  CAS  Google Scholar 

  49. Klijn JG, Setyono-Han B, Foekens JA (2000) Progesterone antagonists and progesterone receptor modulators in the treatment of breast cancer. Steroids 65:825–830

    Article  PubMed  CAS  Google Scholar 

  50. Moore MR (2004) A rationale for inhibiting progesterone-related pathways to combat breast cancer. Curr Cancer Drug Targets 4:183–189

    Article  PubMed  CAS  Google Scholar 

  51. Gaddy VT, Barrett JT, Delk JN, Kallab AM, Porter AG, Schoenlein PV (2004) Mifepristone induces growth arrest, caspase activation, and apoptosis of estrogen receptor-expressing, antiestrogen-resistant breast cancer cells. Clin Cancer Res 10:5215–5225

    Article  PubMed  CAS  Google Scholar 

  52. Horwitz KB (1992) The molecular biology of RU486. Is there a role for antiprogestins in the treatment of breast cancer? Endocr Rev 13:146–163

    PubMed  CAS  Google Scholar 

  53. Montecchia MF, Lamb C, Molinolo AA, Luthy IA, Pazos P, Charreau E, Vanzulli S, Lanari C (1999) Progesterone receptor involvement in independent tumor growth in MPA-induced murine mammary adenocarcinomas. J Steroid Biochem Mol Biol 68:11–21

    Article  PubMed  CAS  Google Scholar 

  54. Lamb CA, Helguero LA, Giulianelli S, Soldati R, Vanzulli SI, Molinolo A, Lanari C (2005) Antisense oligonucleotides targeting the progesterone receptor inhibit hormone-independent breast cancer growth in mice. Breast Cancer Res 7:R1111–R1121

    Article  PubMed  CAS  Google Scholar 

  55. Lyko F, Brown R (2005) DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst 97:1498–1506

    Article  PubMed  CAS  Google Scholar 

  56. O’Brien CS, Howell SJ, Farnie G, Clarke RB (2009) Resistance to endocrine therapy: are breast cancer stem cells the culprits? J Mammary Gland Biol Neoplasia 14:45–54

    Article  PubMed  Google Scholar 

  57. Lin HJ, Zuo T, Lin CH, Kuo CT, Liyanarachchi S, Sun S, Shen R, Deatherage DE, Potter D, Asamoto L, Lin S, Yan PS, Cheng AL, Ostrowski MC, Huang TH (2008) Breast cancer-associated fibroblasts confer AKT1-mediated epigenetic silencing of Cystatin M in epithelial cells. Cancer Res 68:10257–10266

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Drs. Gorostiaga and Bolado for excellent technical support, to Dr. S. Vanzulli for her help in the histopathological evaluation of organs, to Laboratorios Craveri, Buenos Aires for providing MPA. VW received an award from Avon Foundation for data presented at the AACR Meeting 2009, the Breast Cancer Meeting 2009, and ICRETT Fellowship from the UICC permitting training in Dr Russo’s laboratory. This study was supported by Fundación Sales and SECyT (PICT05, 05-14406) to CL, and by NCI and NIEHS Grants UO1ES012771 and R21-ES15894 to JR.

Conflicts of interest statement

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Lanari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPG 562 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wargon, V., Fernandez, S.V., Goin, M. et al. Hypermethylation of the progesterone receptor A in constitutive antiprogestin-resistant mouse mammary carcinomas. Breast Cancer Res Treat 126, 319–332 (2011). https://doi.org/10.1007/s10549-010-0908-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0908-x

Keywords

Navigation