Breast Cancer Research and Treatment

, Volume 125, Issue 3, pp 687–696

Tumor–stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients

  • Esther M. de Kruijf
  • Johanna G. H. van Nes
  • Cornelis J. H. van de Velde
  • Hein Putter
  • Vincent T. H. B. M. Smit
  • Gerrit Jan Liefers
  • Peter J. K. Kuppen
  • Rob A. E. M. Tollenaar
  • Wilma E. Mesker
Preclinical Study

Abstract

Stroma tissue surrounding cancer cells plays an important role in tumor development and behavior. In colorectal cancer, it has been found that the amount of stroma within the primary tumor is of prognostic value. We therefore have evaluated the prognostic value of this tumor–stroma ratio for breast cancer. A cohort of 574 early breast cancer patients, primarily treated with surgery between 1985 and 1994 was analyzed for the tumor–stroma ratio. The percentage of stroma was visually estimated on Haematoxylin-Eosin (H&E) stained histological sections. Patients with more than 50% intra-tumor stroma were quantified as stroma rich and patients with less than 50% as stroma poor. For the total group of patients, stroma-rich tumors had a shorter relapse-free period (RFP) (P = 0.001) and overall survival (OS) (P = 0.025) compared to stroma-poor tumors. Tumor–stroma ratio was an independent prognostic parameter for the total group of patients (P < 0.001) and also in stratified analysis based on systemic treatment. Importantly, in the triple-negative cancer subpopulation, patients with stroma-rich tumors had a 2.92 times higher risk of relapse (P = 0.006) compared to those with stroma-poor tumors, independently of other clinico-pathological parameters. Five-year RFP-rates for triple-negative cancer patients with stroma-rich compared to stroma-poor tumors were 56 and 81%, respectively. Tumor–stroma ratio has proven to be an independent prognostic factor for RFP in breast cancer patients and especially in the triple-negative cancer subpopulation. Tumor–stroma ratio could be easily implemented in routine daily pathology diagnostics, as it is simple to determine, reproducible, and performed in quick time.

Keywords

Stroma Breast cancer Triple-negative carcinomas Prognosis 

Supplementary material

10549_2010_855_MOESM1_ESM.pdf (498 kb)
Supplementary material 1 (PDF 497 kb)

References

  1. 1.
    Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J 360:790–800CrossRefGoogle Scholar
  2. 2.
    Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752CrossRefPubMedGoogle Scholar
  3. 3.
    Nielsen TO, Hsu FD, Jensen K et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374CrossRefPubMedGoogle Scholar
  4. 4.
    Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer registry. Cancer 109:1721–1728CrossRefPubMedGoogle Scholar
  5. 5.
    Reis-Filho JS, Tutt AN (2008) Triple negative tumours: a critical review. Histopathology 52:108–118CrossRefPubMedGoogle Scholar
  6. 6.
    Fan C, Oh DS, Wessels L et al (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355:560–569CrossRefPubMedGoogle Scholar
  7. 7.
    Fulford LG, Reis-Filho JS, Ryder K et al (2007) Basal-like grade III invasive ductal carcinoma of the breast: patterns of metastasis and long-term survival. Breast Cancer Res 9:R4CrossRefPubMedGoogle Scholar
  8. 8.
    Kryj M, Maciejewski B, Withers HR, Taylor JM (1997) Incidence and kinetics of distant metastases in patients with operable breast cancer. Neoplasma 44:3–11PubMedGoogle Scholar
  9. 9.
    Yokota J (2000) Tumor progression and metastasis. Carcinogenesis 21:497–503CrossRefPubMedGoogle Scholar
  10. 10.
    Chang HY, Nuyten DS, Sneddon JB et al (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci 102:3738–3743CrossRefPubMedGoogle Scholar
  11. 11.
    Dvorak HF (1986) Tumors: wounds that do not heal, similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659CrossRefPubMedGoogle Scholar
  12. 12.
    Beck AH, Espinosa I, Gilks CB, van de Rijn M, West RB (2008) The fibromatosis signature defines a robust stromal response in breast carcinoma. Lab Invest 88:591–601CrossRefPubMedGoogle Scholar
  13. 13.
    Finak G, Bertos N, Pepin F et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527CrossRefPubMedGoogle Scholar
  14. 14.
    Mesker WE, Junggeburt JM, Szuhai K et al (2007) The carcinoma-stromal ratio of colon carcinoma is an independent factor for survival compared to lymph node status and tumor stage. Cell Oncol 29:387–398PubMedGoogle Scholar
  15. 15.
    Mesker WE, Liefers G, Junggeburt JMC et al (2009) Presence of a high amount of stroma and downregulation of smad-4 predict a worse survival for stage I-II colon cancer patients. Cell Oncol 31:169–178PubMedGoogle Scholar
  16. 16.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100:229–235CrossRefPubMedGoogle Scholar
  17. 17.
    Putter H, Fiocco M, Geskus RB (2007) Tutorial in biostatistics: competing risks and multi-state models. Stat Med 26:2389–2430CrossRefPubMedGoogle Scholar
  18. 18.
    Courrech Staal EF, Wouters MW, van Sandick JW, et al (2010) The stromal part of adenocarcinomas of the oesophagus: does it conceal targets for therapy? Eur J Cancer 46:720–728CrossRefPubMedGoogle Scholar
  19. 19.
    Harris L, Fritsche H, Mennel R et al (2007) American society of clinical oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287–5312CrossRefPubMedGoogle Scholar
  20. 20.
    Thomas J, Hanby A, Pinder S et al (2008) Implications of inconsistent measurement of ER status in non-invasive breast cancer: a study of 1, 684 cases from the Sloane project. Breast J 14:33–38CrossRefPubMedGoogle Scholar
  21. 21.
    Nunes CB, Rocha RM, Reis-Filho JS et al (2008) Comparative analysis of six different antibodies against Her2 including the novel rabbit monoclonal antibody (SP3) and chromogenic in situ hybridisation in breast carcinomas. J Clin Pathol 61:934–938CrossRefPubMedGoogle Scholar
  22. 22.
    Annecke K, Schmitt M, Euler U et al (2008) uPA and PAI-1 in breast cancer: review of their clinical utility and current validation in the prospective NNBC-3 trial. Adv Clin Chem 45:31–45CrossRefPubMedGoogle Scholar
  23. 23.
    van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009CrossRefPubMedGoogle Scholar
  24. 24.
    Ein-Dor L, Kela I, Getz G, Givol D, Domany E (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21:171–178CrossRefPubMedGoogle Scholar
  25. 25.
    Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365:488–492CrossRefPubMedGoogle Scholar
  26. 26.
    Haibe-Kains B, Desmedt C, Sotiriou C, Bontempi G (2008) A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all? Bioinformatics 24:2200–2208CrossRefPubMedGoogle Scholar
  27. 27.
    Sotiriou C, Piccart MJ (2007) Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer 7:545–553CrossRefPubMedGoogle Scholar
  28. 28.
    Haibe-Kains B, Desmedt C, Piette F et al (2008) Comparison of prognostic gene expression signatures for breast cancer. BMC Genomics 9:394CrossRefPubMedGoogle Scholar
  29. 29.
    Thomassen M, Tan Q, Eiriksdottir F, Bak M, Cold S, Kruse TA (2007) Comparison of gene sets for expression profiling: prediction of metastasis from low-malignant breast cancer. Clin Cancer Res 13:5355–5360CrossRefPubMedGoogle Scholar
  30. 30.
    Wirapati P, Sotiriou C, Kunkel S et al (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10:R65CrossRefPubMedGoogle Scholar
  31. 31.
    Buyse M, Loi S, Van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192CrossRefPubMedGoogle Scholar
  32. 32.
    Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273CrossRefPubMedGoogle Scholar
  33. 33.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174CrossRefPubMedGoogle Scholar
  34. 34.
    Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401CrossRefPubMedGoogle Scholar
  35. 35.
    Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59:5002–5011PubMedGoogle Scholar
  36. 36.
    Orimo A, Gupta PB, Sgroi DC et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Esther M. de Kruijf
    • 1
  • Johanna G. H. van Nes
    • 1
  • Cornelis J. H. van de Velde
    • 1
  • Hein Putter
    • 2
  • Vincent T. H. B. M. Smit
    • 3
  • Gerrit Jan Liefers
    • 1
  • Peter J. K. Kuppen
    • 1
  • Rob A. E. M. Tollenaar
    • 1
  • Wilma E. Mesker
    • 1
  1. 1.Departments of SurgeryLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Departments of Medical StatisticsLeiden University Medical CenterLeidenThe Netherlands
  3. 3.Departments of PathologyLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations