Breast Cancer Research and Treatment

, Volume 122, Issue 1, pp 273–279 | Cite as

Transforming growth factor-β1 polymorphisms and breast cancer risk: a meta-analysis based on 27 case–control studies

  • Xiaowei Qi
  • Fan Zhang
  • Xinhua Yang
  • Linjun Fan
  • Yi Zhang
  • Li Chen
  • Yan Zhou
  • Xianchun Chen
  • Ling Zhong
  • Jun Jiang


The association between transforming growth factor-β1 (TGF-β1) gene polymorphisms and breast cancer risk has been widely reported, but results were somewhat controversial and underpowered. To derive a more precise estimation of the relationship between TGF-β1 polymorphisms and breast cancer risk, we conducted a meta-analysis of all available case–control studies relating the T869C and/or C-509T polymorphisms of the TGF-β1 gene to the risk of developing breast cancer. Eligible articles were identified by search of databases including MEDLINE, PubMed, Web of Science, EMBASE, and Chinese Biomedical Literature database (CBM) for the period up to March 2010. Finally, a total of 17 articles involving 27 case–control studies were identified, 25 with 20,022 cases and 24,423 controls for T869C polymorphism and eight with 10,633 cases and 13,648 controls for C-509T polymorphism. The pooled ORs were performed for the allele contrasts, additive genetic model, dominant genetic model and recessive genetic model, respectively. Subgroup analysis was also performed by ethnicity for T869C polymorphism. With respect to T869C polymorphism, no association was found in overall analysis (C vs. T: OR = 1.033, 95% CI = 0.996–1.072). In the subgroup analysis by ethnicity, significantly increased risk was found in Caucasian population (C vs. T: OR = 1.051, 95% CI = 1.018–1.085; CC vs. TT + TC: OR = 1.083, 95% CI = 1.019–1.151), but not in Asian population (C vs. T: OR = 1.054, 95% CI = 0.983–1.130). With respect to C-509T polymorphism, no significant association with breast cancer risk was demonstrated in overall analysis (T vs. C: OR = 0.986, 95% CI = 0.936–1.039). It can be concluded that potentially functional TGF-Β1 T869C polymorphism may play a low penetrance role in breast cancer susceptibility in an ethnicity-specific manner.


Transforming growth factor-β1 Polymorphism Breast cancer Meta-analysis 



We thank Dr Paul Pharoah, from Departments of Oncology and Public Health and Primary Care, University of Cambridge, England, for interpreting the overlapping dada of Studies of Epidemiology and Risk Factors in Cancer Heredity and relative concepts via e-mail during the manuscript writing. This work was not supported by any funds.


  1. 1.
    Derynck R, Akhurst RJ, Balmain A (2001) TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29:117–129CrossRefPubMedGoogle Scholar
  2. 2.
    Benson JR (2004) Role of transforming growth factor β in breast carcinogenesis. Lancet Oncol 5:229–239CrossRefPubMedGoogle Scholar
  3. 3.
    Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520CrossRefPubMedGoogle Scholar
  4. 4.
    Massagué J (2008) TGFbeta in cancer. Cell 134:215–230CrossRefPubMedGoogle Scholar
  5. 5.
    Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890CrossRefPubMedGoogle Scholar
  6. 6.
    Desruisseau S, Palmari J, Giusti C, Romain S, Martin P-M, Berthois Y (2006) Determination of TGFbeta1 protein level in human primary breast cancers and its relationship with survival. Br J Cancer 94:239–246CrossRefPubMedGoogle Scholar
  7. 7.
    Grau AM, Wen W, Ramroopsignh D, Gao YT, Zi J, Cai Q, Shu XO, Zheng W (2008) Circulating transforming growth factor-beta 1 and breast cancer prognosis: results from the Shanghai Breast Cancer Study. Breast Cancer Res Treat 112:335–341CrossRefPubMedGoogle Scholar
  8. 8.
    Zheng W (2009) Genetic polymorphisms in the transforming growth factor-beta signaling pathways and breast cancer risk and survival. Methods Mol Biol 472:265–277CrossRefPubMedGoogle Scholar
  9. 9.
    Fujii D, Brissenden JE, Derynck R, Francke U (1986) Transforming growth factor beta gene maps to human chromosome 19 long arm and to mouse chromosome 7. Somat Cell Mol Genet 12:218–281CrossRefGoogle Scholar
  10. 10.
    Chang SJ, Chen CJ, Tsai FC, Lai HM, Tsai PC, Tsai MH, Ko YC (2008) Associations between gout tophus and polymorphisms 869T/C and −509C/T in transforming growth factor beta1 gene. Rheumatology (Oxford) 47:617–621CrossRefGoogle Scholar
  11. 11.
    Yuan X, Liao Z, Liu Z, Wang LE, Tucker SL, Mao L, Wang XS, Martel M, Komaki R, Cox JD, Milas L, Wei Q (2009) Single nucleotide polymorphism at rs1982073:T869C of the TGFbeta 1 gene is associated with the risk of radiation pneumonitis in patients with non-small-cell lung cancer treated with definitive radiotherapy. J Clin Oncol 27:3370–3378CrossRefPubMedGoogle Scholar
  12. 12.
    Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, Carter ND, Spector TD (1999) Genetic control of the circulating concentration of transforming growth factor type beta1. Hum Mol Genet 8:93–97CrossRefPubMedGoogle Scholar
  13. 13.
    Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR, Luben RN, Chang-Claude J, Mannermaa A, Kataja V, Pharoah PD, Easton DF, Ponder BA, Metcalfe JC (2003) A transforming growth factor beta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res 63:2610–2615PubMedGoogle Scholar
  14. 14.
    Shu XO, Gao YT, Cai Q, Pierce L, Cai H, Ruan ZX, Yang G, Jin F, Zheng W (2004) Genetic polymorphisms in the TGF-beta 1 gene and breast cancer survival: a report from the Shanghai breast cancer study. Cancer Res 64:836–839CrossRefPubMedGoogle Scholar
  15. 15.
    González-Zuloeta Ladd AM, Arias-Vásquez A, Siemes C, Coebergh JW, Hofman A, Witteman J, Uitterlinden A, Stricker BH, van Duijn CM (2007) Transforming-growth factor beta1 Leu10Pro polymorphism and breast cancer morbidity. Eur J Cancer 43:371–374CrossRefPubMedGoogle Scholar
  16. 16.
    Wei BB, Xi B, Wang R, Bai JM, Chang JK, Zhang YY, Yoneda R, Su JT, Hua LX (2010) TGFbeta1 T29C polymorphism and cancer risk: a meta-analysis based on 40 case-control studies. Cancer Genet Cytogenet 196:68–75Google Scholar
  17. 17.
    Cox A, Dunning AM, Garcia-Closas M, Balasubramanian S, Reed MW, Pooley KA, Scollen S, Baynes C, Ponder BA, Chanock S et al (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39:352–358CrossRefPubMedGoogle Scholar
  18. 18.
    Gonullu G, Basturk B, Evrensel T, Oral B, Gozkaman A, Manavoglu O (2007) Association of breast cancer and cytokine gene polymorphism in Turkish women. Saudi Med J 28:1728–1733PubMedGoogle Scholar
  19. 19.
    Rajkumar T, Samson M, Rama R, Sridevi V, Mahji U, Swaminathan RK, Nancy N (2008) TGFb1 (Leu10Pro), p53 (Arg72Pro) can predict for increased risk for breast cancer in south Indian women and TGFb1 Pro (Leu10Pro) allele predicts response to neo-adjuvant chemo-radiotherapy. Breast Cancer Res Treat 112:81–87CrossRefPubMedGoogle Scholar
  20. 20.
    Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283:2008–2012CrossRefPubMedGoogle Scholar
  21. 21.
    Little J, Bradley L, Bray MS, Clyne M, Dorman J, Ellsworth DL, Hanson J, Khoury M, Lau J, O’Brien TR, Rothman N, Stroup D, Taioli E, Thomas D, Vainio H, Wacholder S, Weinberg C (2002) Reporting, appraising, and integrating data on genotype prevalence and gene-disease associations. Am J Epidemiol 156:300–310PubMedGoogle Scholar
  22. 22.
    Qi X, Ma X, Yang X, Fan L, Zhang Y, Zhang F, Chen L, Zhou Y, Jiang J (2010) Methylenetetrahydrofolate reductase polymorphisms and breast cancer risk: a meta-analysis from 41 studies with 16,480 cases and 22,388 controls. Breast Cancer Res Treat. doi: 10.1007/s10549-010-0773-7
  23. 23.
    Ma X, Qi X, Chen C, Lin H, Xiong H, Li Y, Jiang J (2010) Association between CYP19 polymorphisms and breast cancer risk: results from 10592 cases and 11720 controls. Breast Cancer Res Treat. doi: 10.1007/s10549-009-0693-6
  24. 24.
    Ma X, Chen C, Xiong H, Fan J, Li Y, Lin H, Xu R, Huang G, Xu B (2010) No association between SOD2 Val16Ala polymorphism and breast cancer susceptibility: a meta-analysis based on 9,710 cases and 11,041 controls. Breast Cancer Res Treat. doi:  10.1007/s10549-009-0725-2
  25. 25.
    Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748PubMedGoogle Scholar
  26. 26.
    DerSimonian R, Kacker R (2007) Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials 28:105–114CrossRefPubMedGoogle Scholar
  27. 27.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188CrossRefPubMedGoogle Scholar
  28. 28.
    Ziv E, Cauley J, Morin PA, Saiz R, Browner WS (2001) Association between the T29 → C polymorphism in the transforming growth factor beta1 gene and breast cancer among elderly white women: the study of osteoporotic fractures. JAMA 285:2859–2863CrossRefPubMedGoogle Scholar
  29. 29.
    Sigurdson AJ, Hauptmann M, Chatterjee N, Alexander BH, Doody MM, Rutter JL, Struewing JP (2004) Kin-cohort estimates for familial breast cancer risk in relation to variants in DNA base excision repair, BRCA1 interacting and growth factor genes. BMC Cancer 4:9. doi: 10.1186/1471-2407-4-9 CrossRefPubMedGoogle Scholar
  30. 30.
    Skerrett DL, Moore EM, Bernstein DS (2005) Cytokine genotype polymorphisms in breast carcinoma: associations of TGF-β 1 with relapse. Cancer Investig 23:208–214CrossRefGoogle Scholar
  31. 31.
    Rebbeck TR, Antoniou AC, Llopis TC, Nevanlinna H, Aittomäki K, Simard J, Spurdle AB, KConFab, Couch FJ, Pereira LH et al (2009) No association of TGFB1 L10P genotypes and breast cancer risk in BRCA1 and BRCA2 mutation carriers: a multi-center cohort study. Breast Cancer Res Treat 115:185–192CrossRefPubMedGoogle Scholar
  32. 32.
    Pharoah PD, Tyrer J, Dunning AM, Easton DF, Ponder BA, SEARCH Investigators (2007) Association between common variation in 120 candidate genes and breast cancer risk. PLoS Genet 3:e42. doi: 10.1371/journal.pgen.0030042 CrossRefPubMedGoogle Scholar
  33. 33.
    Hishida A, Iwata H, Hamajima N, Matsuo K, Mizutani M, Iwase T, Miura S, Emi N, Hirose K, Tajima K (2003) Transforming growth factor B1 T29C polymorphism and breast cancer risk in Japanese women. Breast Cancer 10:63–69CrossRefPubMedGoogle Scholar
  34. 34.
    Krippl P, Langsenlehner U, Renner W, Yazdani-Biuki B, Wolf G, Wascher TC, Paulweber B, Bahadori B, Samonigg H (2003) The L10P polymorphism of the transforming growth factor-beta 1 gene is not associated with breast cancer risk. Cancer Lett 201:181–184CrossRefPubMedGoogle Scholar
  35. 35.
    Jin Q, Hemminki K, Grzybowska E, Klaes R, Soderberg M, Zientek H, Rogozinska-Szczepka J, Utracka-Hutka B, Pamula J, Pekala W, Forsti A (2004) Polymorphisms and haplotype structures in genes for transforming growth factor beta1 and its receptors in familial and unselected breast cancers. Int J Cancer 112:94–99CrossRefPubMedGoogle Scholar
  36. 36.
    Le Marchand L, Haiman CA, van den Berg D, Wilkens LR, Kolonel LN, Henderson BE (2004) T29C polymorphism in the transforming growth factorβ 1 gene and postmenopausal breast cancer risk: the Multiethnic Cohort Study. Cancer Epidemiol Biomarkers Prev 13:412–415PubMedGoogle Scholar
  37. 37.
    Saha A, Gupta V, Bairwa NK, Malhotra D, Bamezai R (2004) Transforming growth factor-β 1 genotype in sporadic breast cancer patients from India: status of enhancer, promoter, 5′-untranslated-region and exon-1 polymorphisms. Eur J Immunogenet 31:37–42CrossRefPubMedGoogle Scholar
  38. 38.
    Kaklamani VG, Baddi L, Liu J, Rosman D, Phukan S, Bradley C, Hegarty C, McDaniel B, Rademaker A, Oddoux C, Ostrer H, Michel LS, Huang H, Chen Y, Ahsan H, Offit K, Pasche B (2005) Combined genetic assessment of transforming growth factor-β signaling pathway variants may predict breast cancer risk. Cancer Res 65:3454–3461PubMedGoogle Scholar
  39. 39.
    Lee KM, Park SK, Hamajima N, Tajima K, Yoo KY, Shin A, Noh DY, Ahn SH, Hir-vonen A, Kang D (2005) Genetic polymorphisms of TGF-β1 & TNF-β and breast cancer risk. Breast Cancer Res Treat 90:149–155CrossRefPubMedGoogle Scholar
  40. 40.
    Shin A, Shu XO, Cai Q, Gao YT, Zheng W (2005) Genetic polymorphisms of the transforming growth factor-β1 gene and breast cancer risk: a possible dual role at different cancer stages. Cancer Epidemiol Biomarkers Prev 14:1567–1570CrossRefPubMedGoogle Scholar
  41. 41.
    Feigelson HS, Patel AV, Diver WR, Stevens VL, Thun MJ, Calle EE (2006) Transforming growth factorβ receptor type I and transforming growth factorβ 1 polymorphisms are not associated with postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev 15:1236–1237CrossRefPubMedGoogle Scholar
  42. 42.
    Scola L, Vaglica M, Crivello A, Palmeri L, Forte GI, Macaluso MC, Giacalone A, Di Noto L, Bongiovanni A, Raimondi C, Accardo A, Verna R, Candore G, Caruso C, Lio D, Palmeri S (2006) Cytokine gene polymorphisms and breast cancer susceptibility. Ann N Y Acad Sci 1089:104–109CrossRefPubMedGoogle Scholar
  43. 43.
    Cox D, Penney K, Guo Q, Hankinson S, Hunter D (2007) TGFB1 and TGFBR1 polymorphisms and breast cancer risk in the nurses’ health study. BMC Cancer 7:175. doi: 10.1186/1471-2407-7-175 CrossRefPubMedGoogle Scholar
  44. 44.
    Jakubowska A, Jaworska K, Cybulski C, Janicka A, Szymańska-Pasternak J, Lener M, Narod SA, Lubiński J, IHCC-Breast Cancer Study Group (2009) Do BRCA1 modifiers also affect the risk of breast cancer in non-carriers? Eur J Cancer 45:837–842CrossRefPubMedGoogle Scholar
  45. 45.
    The MARIE-GENICA Consortium on Genetic Susceptibility for Menopausal Hormone Therapy Related Breast Cancer Risk (2009) Polymorphisms in the BRCA1 and ABCB1 genes modulate menopausal hormone therapy associated breast cancer risk in postmenopausal women. Breast Cancer Res Treat. doi: 10.1007/s10549-009-0489-8
  46. 46.
    Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108CrossRefPubMedGoogle Scholar
  47. 47.
    Lichtenstein P, Holm NV, Verkasalo PK (2000) Environmental and heritable factors in the causation of cancer. N Engl J Med 343:78–85CrossRefPubMedGoogle Scholar
  48. 48.
    Sergentanis TN, Economopoulos KP (2010) Association of two CASP8 polymorphisms with breast cancer risk: a meta-analysis. Breast Cancer Res Treat 120:229–234CrossRefPubMedGoogle Scholar
  49. 49.
    Economopoulos KP, Sergentanis TN (2010) Three polymorphisms in cytochrome P450 1B1 (CYP1B1) gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. doi: 10.1007/s10549-009-0694-5
  50. 50.
    Qiu LX, Yao L, Yuan H, Mao C, Chen B, Zhan P, Xue K, Zhang J, Hu XC (2010) IGFBP3 A-202C polymorphism and breast cancer susceptibility: a meta-analysis involving 33,557 cases and 45,254 controls. Breast Cancer Res Treat. doi: 10.1007/s10549-010-0739-9
  51. 51.
    Breast Cancer Association Consortium (2006) Commonly studied single-nucleotide polymorphisms and breast cancer: results from the Breast Cancer Association Consortium. J Natl Cancer Inst 98:1382–1396CrossRefGoogle Scholar
  52. 52.
    Janssens AC, González-Zuloeta Ladd AM, López-Léon S, Ioannidis JP, Oostra BA, Khoury MJ, van Duijn CM (2009) An empirical comparison of meta-analyses of published gene-disease associations versus consortium analyses. Genet Med 11:153–162CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Xiaowei Qi
    • 1
  • Fan Zhang
    • 1
  • Xinhua Yang
    • 1
  • Linjun Fan
    • 1
  • Yi Zhang
    • 1
  • Li Chen
    • 1
  • Yan Zhou
    • 1
  • Xianchun Chen
    • 1
  • Ling Zhong
    • 1
  • Jun Jiang
    • 1
  1. 1.Breast Disease Center, Southwest HospitalThird Military Medical UniversityChongqingChina

Personalised recommendations