Breast Cancer Research and Treatment

, Volume 125, Issue 1, pp 65–72

Presence of Foxp3 expression in tumor cells predicts better survival in HER2-overexpressing breast cancer patients treated with neoadjuvant chemotherapy

  • Sylvain Ladoire
  • Laurent Arnould
  • Grégoire Mignot
  • Bruno Coudert
  • Cédric Rébé
  • Fanny Chalmin
  • Julie Vincent
  • Mélanie Bruchard
  • Bruno Chauffert
  • François Martin
  • Pierre Fumoleau
  • François Ghiringhelli
Preclinical study

Abstract

The Forkhead Box Protein 3 is highly expressed not only in regulatory T cells, but also in tumor cells, acting as a transcriptional repressor of breast oncogenes including HER2. We investigated the prognostic significance of Foxp3 expression in cancer cells in a large cohort of patients with HER2-overexpressing breast carcinoma treated with neoadjuvant chemotherapy. Foxp3-positive tumor cells were detected by immunohistochemistry in 103 patients with primary invasive HER2-overexpressing breast carcinoma, and treated with neoadjuvant chemotherapy, with or without trastuzumab. Kaplan–Meier analysis and Cox regression model were used to assess relapse-free and overall survival, respectively, and according to the presence or the absence of Foxp3 expression in tumor cells. Breast cancer cells were Foxp3+ in 57% of tumors. Foxp3 expression in breast cancer cells was associated with better relapse-free (P = 0.005) and overall survival (P = 0.03). By multivariate analysis, the presence of Foxp3+ tumor cells produced an independent prognostic factor for both better relapse-free (P = 0.006) and overall survival (P = 0.03). These findings indicate that the presence of Foxp3+ tumor cells represents a new independent prognostic factor of improved outcome in HER2-overexpressing breast carcinoma, which could help identify high-risk patients for additional therapies after neoadjuvant chemotherapy.

Keywords

Foxp3 HER2 Breast cancer Tumor cells Neoadjuvant chemotherapy 

References

  1. 1.
    Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061CrossRefPubMedGoogle Scholar
  2. 2.
    Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336CrossRefPubMedGoogle Scholar
  3. 3.
    Sakaguchi S, Ono M, Setoguchi R et al (2006) Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212:8–27CrossRefPubMedGoogle Scholar
  4. 4.
    Ghiringhelli F, Menard C, Puig PE et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+ CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648CrossRefPubMedGoogle Scholar
  5. 5.
    Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949CrossRefPubMedGoogle Scholar
  6. 6.
    Ko HJ, Kim YJ, Kim YS et al (2007) A combination of chemoimmunotherapies can efficiently break self-tolerance and induce antitumor immunity in a tolerogenic murine tumor model. Cancer Res 67:7477–7486CrossRefPubMedGoogle Scholar
  7. 7.
    Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G (2001) Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 193:1303–1310CrossRefPubMedGoogle Scholar
  8. 8.
    Ghiringhelli F, Menard C, Martin F, Zitvogel L (2006) The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression. Immunol Rev 214:229–238CrossRefPubMedGoogle Scholar
  9. 9.
    Roux S, Apetoh L, Chalmin F et al (2008) CD4+CD25+ tregs control the TRAIL-dependent cytotoxicity of tumor-infiltrating DCs in rodent models of colon cancer. J Clin Investig 118:3751–3761CrossRefPubMedGoogle Scholar
  10. 10.
    Karanikas V, Speletas M, Zamanakou M et al (2008) Foxp3 expression in human cancer cells. J Transl Med 6:19CrossRefPubMedGoogle Scholar
  11. 11.
    Merlo A, Casalini P, Carcangiu ML et al (2009) FOXP3 expression and overall survival in breast cancer. J Clin Oncol 27:1746–1752CrossRefPubMedGoogle Scholar
  12. 12.
    Zuo T, Liu R, Zhang H et al (2007) FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J Clin Investig 117:3765–3773PubMedGoogle Scholar
  13. 13.
    Zuo T, Wang L, Morrison C et al (2007) FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell 129:1275–1286CrossRefPubMedGoogle Scholar
  14. 14.
    Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:403–410CrossRefPubMedGoogle Scholar
  15. 15.
    Chevallier B, Roche H, Olivier JP, Chollet P, Hurteloup P (1993) Inflammatory breast cancer. Pilot study of intensive induction chemotherapy (FEC-HD) results in a high histologic response rate. Am J Clin Oncol 16:223–228CrossRefPubMedGoogle Scholar
  16. 16.
    Black MM, Opler SR, Speer FD (1956) Structural representations of tumor-host relationships in gastric carcinoma. Surg Gynecol Obstet 102:599–603PubMedGoogle Scholar
  17. 17.
    Ladoire S, Arnould L, Apetoh L et al (2008) Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells. Clin Cancer Res 14:2413–2420CrossRefPubMedGoogle Scholar
  18. 18.
    Coffer PJ, Burgering BM (2004) Forkhead-box transcription factors and their role in the immune system. Nat Rev Immunol 4:889–899CrossRefPubMedGoogle Scholar
  19. 19.
    Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F (2005) Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 65:2457–2464CrossRefPubMedGoogle Scholar
  20. 20.
    Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H (2003) Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 9:4404–4408PubMedGoogle Scholar
  21. 21.
    Bates GJ, Fox SB, Han C et al (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24:5373–5380CrossRefPubMedGoogle Scholar
  22. 22.
    Hinz S, Pagerols-Raluy L, Oberg HH et al (2007) Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res 67:8344–8350CrossRefPubMedGoogle Scholar
  23. 23.
    Ebert LM, Tan BS, Browning J et al (2008) The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells. Cancer Res 68:3001–3009CrossRefPubMedGoogle Scholar
  24. 24.
    Liu Y, Wang Y, Li W, Zheng P (2009) Activating transcription factor 2 and c-Jun-mediated induction of FoxP3 for experimental therapy of mammary tumor in the mouse. Cancer Res 69:5954–5960CrossRefPubMedGoogle Scholar
  25. 25.
    Chen GY, Chen C, Wang L, Chang X, Zheng P, Liu Y (2008) Cutting edge: broad expression of the FoxP3 locus in epithelial cells: a caution against early interpretation of fatal inflammatory diseases following in vivo depletion of FoxP3-expressing cells. J Immunol 180:5163–5166PubMedGoogle Scholar
  26. 26.
    Wang L, Liu R, Li W et al (2009) Somatic single hits inactivate the X-linked tumor suppressor FOXP3 in the prostate. Cancer Cell 16:336–346CrossRefPubMedGoogle Scholar
  27. 27.
    Lopes JE, Torgerson TR, Schubert LA et al (2006) Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J Immunol 177:3133–3142PubMedGoogle Scholar
  28. 28.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 23:9067–9072CrossRefPubMedGoogle Scholar
  29. 29.
    Gobert M, Treilleux I, Bendriss-Vermare N et al (2009) Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res 69:2000–2009CrossRefPubMedGoogle Scholar
  30. 30.
    Nair S, Boczkowski D, Fassnacht M, Pisetsky D, Gilboa E (2007) Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res 67:371–380CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Sylvain Ladoire
    • 1
    • 2
    • 3
  • Laurent Arnould
    • 3
  • Grégoire Mignot
    • 2
  • Bruno Coudert
    • 1
  • Cédric Rébé
    • 2
    • 3
  • Fanny Chalmin
    • 2
  • Julie Vincent
    • 2
  • Mélanie Bruchard
    • 2
  • Bruno Chauffert
    • 1
    • 2
  • François Martin
    • 2
  • Pierre Fumoleau
    • 1
  • François Ghiringhelli
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of Medical OncologyCentre Regional de Lutte Contre le Cancer Georges François LeclercDijonFrance
  2. 2.Institut National de la Santé et de la Recherche MédicaleUniversity of DijonDijonFrance
  3. 3.Department of Pathology and Molecular BiologyCentre Regional de Lutte Contre le Cancer Georges François LeclercDijonFrance
  4. 4.Faculté de MédecineCentre Georges François Leclerc, Centre de Recherche INSERM 866DijonFrance

Personalised recommendations