Advertisement

Breast Cancer Research and Treatment

, Volume 121, Issue 2, pp 281–292 | Cite as

Health disparities in breast cancer: biology meets socioeconomic status

  • Barbara K. Dunn
  • Tanya Agurs-Collins
  • Doris Browne
  • Ronald Lubet
  • Karen A. Johnson
Review

Abstract

Breast cancer is the most common cancer in women worldwide, accounting for just over 1 million new cases annually. Population-based statistics show that globally, when compared to whites, women of African ancestry (AA) tend to have more aggressive breast cancers that present more frequently as estrogen receptor negative (ERneg) tumors. ERneg tumors fail to respond to current established targeted therapies, whether for treatment or prevention. Subsets of the ERneg phenotype include those that are also negative for the progesterone receptor (PR) and HER2; these are called “triple negative” (TN) breast cancers. TN tumors frequently have pathological characteristics resembling “basal-like” breast cancers. Hence, the latter two terms are often used interchangeably; yet, despite extensive overlap, they are not synonymous. The ERneg, TN, and basal-like phenotypic categories are important because they carry worse prognoses than ER-positive (ERpos) tumors, in addition to lacking obvious molecular targets, such as HER2 and the ER, for known therapies. Furthermore, among premenopausal women the three subsets occur more frequently in women of African descent compared to white women with breast cancer. The contribution of these three subtypes of poor-prognosis tumors to the higher breast cancer mortality in black women is the focus of this review. We will attempt to clarify some of the issues, including risk factors, in terms of their contribution to that component of health disparities that involves biological differences in breast cancer between women of AA and white women.

Keywords

Breast cancer Estrogen receptor negative Health disparities Epidemiology Risk factors Targeted therapy 

References

  1. 1.
    Browne D (2008) Public Health Democracy: U.S. and Global Health Disparities in Breast Cancer. Woodrow Wilson International Center for Scholars, Global Health Initiative, Washington, DC www.wilsoncenter.org/globalhealth
  2. 2.
    Anderson WF, Rosenberg PS, Menashe I, Mitani A, Pfeiffer RM (2008) Age-related crossover in breast cancer incidence rates between black and white ethnic groups. J Natl Cancer Inst 100:1804–1814. doi: 10.1093/jnci/djn411 PubMedCrossRefGoogle Scholar
  3. 3.
    Brinton LA, Sherman ME, Carreon JD, Anderson WF (2008) Recent trends in breast cancer among younger women in the United States. J Natl Cancer Inst 100:1643–1648. doi: 10.1093/jnci/djn344 PubMedCrossRefGoogle Scholar
  4. 4.
    Morris GJ, Mitchell EP (2008) Higher incidence of aggressive breast cancers in African–American women: a review. J Natl Med Assoc 100:698–702PubMedGoogle Scholar
  5. 5.
    McBride R, Hershman D, Tsai WY, Jacobson JS, Grann V, Neugut AI (2007) Within-stage racial differences in tumor size and number of positive lymph nodes in women with breast cancer. Cancer 110:1201–1208. doi: 10.1002/cncr.22884 PubMedCrossRefGoogle Scholar
  6. 6.
    ACS (2009) Cancer facts & figures 2009. American Cancer Society, Atlanta, GA. [http://www.cancer.org/downloads/STT/cffaa_2009-2010.pdf]
  7. 7.
    Harper S, Lynch J, Meersman SC, Breen N, Davis WW, Reichman MC (2009) Trends in area-socioeconomic and race-ethnic disparities in breast cancer incidence, stage at diagnosis, screening, mortality, and survival among women ages 50 years and over (1987–2005). Cancer Epidemiol Biomarkers Prev 18:121–131. doi: 10.1158/1055-9965.EPI-08-0679 PubMedCrossRefGoogle Scholar
  8. 8.
    Haas JS, Earle CC, Orav JE, Brawarsky P, Keohane M, Neville BA, Williams DR (2008) Racial segregation and disparities in breast cancer care and mortality. Cancer 113:2166–2172. doi: 10.1002/cncr.23828 PubMedCrossRefGoogle Scholar
  9. 9.
    Hershman DL, Unger JM, Barlow WE, Hutchins LF et al (2009) Treatment quality and outcomes of African American versus white breast cancer patients: retrospective analysis of Southwest oncology studies S8814/S8897. J Clin Oncol 27:2157–2162. doi: 10.1200/JCO.2008.19.1163 PubMedCrossRefGoogle Scholar
  10. 10.
    Porter PL, Garcia R, Moe R, Corwin DJ, Gown AM (1991) C-erbB-2 oncogene protein in in situ and invasive lobular breast neoplasia. Cancer 68:331–334PubMedCrossRefGoogle Scholar
  11. 11.
    Porter PL, Lund MJ, Lin MG, Yuan X et al (2004) Racial differences in the expression of cell cycle-regulatory proteins in breast carcinoma. Cancer 100:2533–2542. doi: 10.1002/cncr.20279 PubMedCrossRefGoogle Scholar
  12. 12.
    Amend K, Hicks D, Ambrosone CB (2006) Breast cancer in African–American women: differences in tumor biology from European–American women. Cancer Res 66:8327–8330. doi: 10.1158/0008-5472.CAN-06-1927 PubMedCrossRefGoogle Scholar
  13. 13.
    Carey LA, Perou CM, Livasy CA, Dressler LG et al (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502. doi: 10.1001/jama.295.21.2492 PubMedCrossRefGoogle Scholar
  14. 14.
    Ihemelandu CU, Leffall LD Jr, Dewitty RL, Naab TJ et al (2007) Molecular breast cancer subtypes in premenopausal African–American women, tumor biologic factors and clinical outcome. Ann Surg Oncol 14:2994–3003. doi: 10.1245/s10434-007-9477-6 PubMedCrossRefGoogle Scholar
  15. 15.
    Ihemelandu CU, Naab TJ, Mezghebe HM, Makambi KH et al (2008) Basal cell-like (triple-negative) breast cancer, a predictor of distant metastasis in African American women. Am J Surg 195:153–158. doi: 10.1016/j.amjsurg.2007.09.033 PubMedCrossRefGoogle Scholar
  16. 16.
    Mehrotra J, Ganpat MM, Kanaan Y, Fackler MJ et al (2004) Estrogen receptor/progesterone receptor-negative breast cancers of young African–American women have a higher frequency of methylation of multiple genes than those of Caucasian women. Clin Cancer Res 10:2052–2057PubMedCrossRefGoogle Scholar
  17. 17.
    Nalwoga H, Arnes JB, Wabinga H, Akslen LA (2007) Frequency of the basal-like phenotype in African breast cancer. APMIS 115:1391–1399. doi: 10.1111/j.1600-0463.2007.00862.x PubMedCrossRefGoogle Scholar
  18. 18.
    Bowen RL, Duffy SW, Ryan DA, Hart IR, Jones JL (2008) Early onset of breast cancer in a group of British black women. Br J Cancer 98:277–281. doi: 10.1038/sj.bjc.6604174 PubMedCrossRefGoogle Scholar
  19. 19.
    Hennis AJ, Hambleton IR, Wu SY, Leske MC, Nemesure B (2009) Breast cancer incidence and mortality in a Caribbean population: comparisons with African–Americans. Int J Cancer 124:429–433. doi: 10.1002/ijc.23889 PubMedCrossRefGoogle Scholar
  20. 20.
    Schneider BP, Winer EP, Foulkes WD, Garber J et al (2008) Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res 14:8010–8018. doi: 10.1158/1078-0432.CCR-08-1208 PubMedCrossRefGoogle Scholar
  21. 21.
    Reis-Filho JS, Tutt AN (2008) Triple negative tumours: a critical review. Histopathology 52:108–118. doi: 10.1111/j.1365-2559.2007.02889.x PubMedCrossRefGoogle Scholar
  22. 22.
    Nagle RB, Bocker W, Davis JR, Heid HW, Kaufmann M, Lucas DO, Jarasch ED (1986) Characterization of breast carcinomas by two monoclonal antibodies distinguishing myoepithelial from luminal epithelial cells. J Histochem Cytochem 34:869–881PubMedGoogle Scholar
  23. 23.
    Dairkee S, Heid HW (1993) Cytokeratin profile of immunomagnetically separated epithelial subsets of the human mammary gland. In Vitro Cell Dev Biol Anim 29A:427–432PubMedCrossRefGoogle Scholar
  24. 24.
    Gusterson BA, Ross DT, Heath VJ, Stein T (2005) Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res 7:143–148. doi: 10.1186/bcr1041 PubMedCrossRefGoogle Scholar
  25. 25.
    Fulford LG, Easton DF, Reis-Filho JS, Sofronis A, Gillett CE, Lakhani SR, Hanby A (2006) Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology 49:22–34. doi: 10.1111/j.1365-2559.2006.02453.x PubMedCrossRefGoogle Scholar
  26. 26.
    Moll R (1998) Cytokeratins as markers of differentiation in the diagnosis of epithelial tumors. Subcell Biochem 31:205–262PubMedGoogle Scholar
  27. 27.
    van de Rijn M, Perou CM, Tibshirani R, Haas P et al (2002) Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol 161:1991–1996PubMedGoogle Scholar
  28. 28.
    Nielsen TO, Hsu FD, Jensen K, Cheang M et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374. doi: 10.1158/1078-0432.CCR-04-0220 PubMedCrossRefGoogle Scholar
  29. 29.
    Rakha EA, Reis-Filho JS, Ellis IO (2008) Basal-like breast cancer: a critical review. J Clin Oncol 26:2568–2581. doi: 10.1200/JCO.2007.13.1748 PubMedCrossRefGoogle Scholar
  30. 30.
    Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, Perou CM (2006) Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 19:264–271. doi: 10.1038/modpathol.3800528 PubMedCrossRefGoogle Scholar
  31. 31.
    Cleator S, Heller W, Coombes RC (2007) Triple-negative breast cancer: therapeutic options. Lancet Oncol 8:235–244. doi: 10.1016/S1470-2045(07)70074-8 PubMedCrossRefGoogle Scholar
  32. 32.
    Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360:790–800. doi: 10.1056/NEJMra0801289 PubMedCrossRefGoogle Scholar
  33. 33.
    Prat A, Perou CM (2009) Mammary development meets cancer genomics. Nat Med 15:842–844. doi: 10.1038/nm0809-842 PubMedCrossRefGoogle Scholar
  34. 34.
    Lim E, Vaillant F, Wu D, Forrest NC et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907–913. doi: 10.1038/nm.2000 PubMedCrossRefGoogle Scholar
  35. 35.
    Foulkes WD, Stefansson IM, Chappuis PO, Begin LR et al (2003) Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 95:1482–1485PubMedGoogle Scholar
  36. 36.
    Lakhani SR, Reis-Filho JS, Fulford L, Penault-Llorca F et al (2005) Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 11:5175–5180. doi: 10.1158/1078-0432.CCR-04-2424 PubMedCrossRefGoogle Scholar
  37. 37.
    Atchley DP, Albarracin CT, Lopez A, Valero V et al (2008) Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol 26:4282–4288. doi: 10.1200/JCO.2008.16.6231 PubMedCrossRefGoogle Scholar
  38. 38.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752. doi: 10.1038/35021093 PubMedCrossRefGoogle Scholar
  39. 39.
    Sorlie T, Perou CM, Tibshirani R, Aas T et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874. doi: 10.1073/pnas.191367098 PubMedCrossRefGoogle Scholar
  40. 40.
    Foekens JA, Atkins D, Zhang Y, Sweep FC et al (2006) Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer. J Clin Oncol 24:1665–1671. doi: 10.1200/JCO.2005.03.9115 PubMedCrossRefGoogle Scholar
  41. 41.
    Tavtigian SV, Pierotti MA, Borresen-Dale AL (2006) International Agency for Research on Cancer workshop on ‘Expression array analyses in breast cancer taxonomy’. Breast Cancer Res 8:303. doi: 10.1186/bcr1609 PubMedCrossRefGoogle Scholar
  42. 42.
    Parker JS, Mullins M, Cheang MC, Leung S et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167. doi: 10.1200/JCO.2008.18.1370 PubMedCrossRefGoogle Scholar
  43. 43.
    Bidard FC, Conforti R, Boulet T, Michiels S, Delaloge S, Andre F (2007) Does triple-negative phenotype accurately identify basal-like tumour? An immunohistochemical analysis based on 143 ‘triple-negative’ breast cancers. Ann Oncol 18:1285–1286. doi: 10.1093/annonc/mdm360 PubMedCrossRefGoogle Scholar
  44. 44.
    Cheang MC, Voduc D, Bajdik C, Leung S et al (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14:1368–1376. doi: 10.1158/1078-0432.CCR-07-1658 PubMedCrossRefGoogle Scholar
  45. 45.
    Brown M, Tsodikov A, Bauer KR, Parise CA, Caggiano V (2008) The role of human epidermal growth factor receptor 2 in the survival of women with estrogen and progesterone receptor-negative, invasive breast cancer: the California Cancer Registry, 1999–2004. Cancer 112:737–747. doi: 10.1002/cncr.23243 PubMedCrossRefGoogle Scholar
  46. 46.
    Ross JS, Hatzis C, Symmans WF, Pusztai L, Hortobagyi GN (2008) Commercialized multigene predictors of clinical outcome for breast cancer. Oncologist 13:477–493. doi: 10.1634/theoncologist.2007-0248 PubMedCrossRefGoogle Scholar
  47. 47.
    Yamamoto Y, Ibusuki M, Nakano M, Kawasoe T, Hiki R, Iwase H (2009) Clinical significance of basal-like subtype in triple-negative breast cancer. Breast Cancer 16:260–267. doi: 10.1007/s12282-009-0150-8 PubMedCrossRefGoogle Scholar
  48. 48.
    Chlebowski RT, Chen Z, Anderson GL, Rohan T et al (2005) Ethnicity and breast cancer: factors influencing differences in incidence and outcome. J Natl Cancer Inst 97:439–448. doi: 10.1093/jnci/dji064 PubMedCrossRefGoogle Scholar
  49. 49.
    Jumppanen M, Gruvberger-Saal S, Kauraniemi P, Tanner M et al (2007) Basal-like phenotype is not associated with patient survival in estrogen-receptor-negative breast cancers. Breast Cancer Res 9:R16. doi: 10.1186/bcr1649 PubMedCrossRefGoogle Scholar
  50. 50.
    Millikan RC, Newman B, Tse CK, Moorman PG et al (2008) Epidemiology of basal-like breast cancer. Breast Cancer Res Treat 109:123–139. doi: 10.1007/s10549-007-9632-6 PubMedCrossRefGoogle Scholar
  51. 51.
    Ursin G, Bernstein L, Lord SJ, Karim R et al (2005) Reproductive factors and subtypes of breast cancer defined by hormone receptor and histology. Br J Cancer 93:364–371. doi: 10.1038/sj.bjc.6602712 PubMedCrossRefGoogle Scholar
  52. 52.
    Yang XR, Sherman ME, Rimm DL, Lissowska J et al (2007) Differences in risk factors for breast cancer molecular subtypes in a population-based study. Cancer Epidemiol Biomarkers Prev 16:439–443. doi: 10.1158/1055-9965.EPI-06-0806 PubMedCrossRefGoogle Scholar
  53. 53.
    Ma H, Bernstein L, Pike MC, Ursin G (2006) Reproductive factors and breast cancer risk according to joint estrogen and progesterone receptor status: a meta-analysis of epidemiological studies. Breast Cancer Res 8:R43. doi: 10.1186/bcr1525 PubMedCrossRefGoogle Scholar
  54. 54.
    Phipps AI, Malone KE, Porter PL, Daling JR, Li CI (2008) Reproductive and hormonal risk factors for postmenopausal luminal, HER-2-overexpressing, and triple-negative breast cancer. Cancer 113:1521–1526. doi: 10.1002/cncr.23786 PubMedCrossRefGoogle Scholar
  55. 55.
    Clegg LX, Reichman ME, Miller BA, Hankey BF et al (2009) Impact of socioeconomic status on cancer incidence and stage at diagnosis: selected findings from the surveillance, epidemiology, and end results: National Longitudinal Mortality Study. Cancer Causes Control 20:417–435. doi: 10.1007/s10552-008-9256-0 PubMedCrossRefGoogle Scholar
  56. 56.
    Gordon NH (1995) Association of education and income with estrogen receptor status in primary breast cancer. Am J Epidemiol 142:796–803PubMedGoogle Scholar
  57. 57.
    Taylor A, Cheng KK (2003) Social deprivation and breast cancer. J Public Health Med 25:228–233PubMedCrossRefGoogle Scholar
  58. 58.
    Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer registry. Cancer 109:1721–1728. doi: 10.1002/cncr.22618 PubMedCrossRefGoogle Scholar
  59. 59.
    Parise CA, Bauer KR, Brown MM, Caggiano V (2009) Breast cancer subtypes as defined by the estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2) among women with invasive breast cancer in California, 1999–2004. Breast J 15:593–602. doi: 10.1111/j.1524-4741.2009.00822.x PubMedCrossRefGoogle Scholar
  60. 60.
    Fung TT, Hu FB, Holmes MD, Rosner BA, Hunter DJ, Colditz GA, Willett WC (2005) Dietary patterns and the risk of postmenopausal breast cancer. Int J Cancer 116:116–121. doi: 10.1002/ijc.20999 PubMedCrossRefGoogle Scholar
  61. 61.
    Fung TT, Hu FB, McCullough ML, Newby PK, Willett WC, Holmes MD (2006) Diet quality is associated with the risk of estrogen receptor-negative breast cancer in postmenopausal women. J Nutr 136:466–472PubMedGoogle Scholar
  62. 62.
    Agurs-Collins T, Rosenberg L, Makambi K, Palmer JR, Adams-Campbell L (2009) Dietary patterns and breast cancer risk in women participating in the Black Women’s Health Study. Am J Clin Nutr 90:621–628. doi: 10.3945/ajcn.2009.27666 PubMedCrossRefGoogle Scholar
  63. 63.
    Touillaud MS, Pillow PC, Jakovljevic J, Bondy ML, Singletary SE, Li D, Chang S (2005) Effect of dietary intake of phytoestrogens on estrogen receptor status in premenopausal women with breast cancer. Nutr Cancer 51:162–169. doi: 10.1207/s15327914nc5102_6 PubMedCrossRefGoogle Scholar
  64. 64.
    McCann SE, Kulkarni S, Trevisan M, Vito D et al (2006) Dietary lignan intakes and risk of breast cancer by tumor estrogen receptor status. Breast Cancer Res Treat 99:309–311. doi: 10.1007/s10549-006-9196-x PubMedCrossRefGoogle Scholar
  65. 65.
    Zhang M, Yang H, Holman CD (2009) Dietary intake of isoflavones and breast cancer risk by estrogen and progesterone receptor status. Breast Cancer Res Treat 118:553–563PubMedCrossRefGoogle Scholar
  66. 66.
    Zhang SM, Hankinson SE, Hunter DJ, Giovannucci EL, Colditz GA, Willett WC (2005) Folate intake and risk of breast cancer characterized by hormone receptor status. Cancer Epidemiol Biomarkers Prev 14:2004–2008. doi: 10.1158/1055-9965.EPI-05-0083 PubMedCrossRefGoogle Scholar
  67. 67.
    Maruti SS, Ulrich CM, White E (2009) Folate and one-carbon metabolism nutrients from supplements and diet in relation to breast cancer risk. Am J Clin Nutr 89:624–633. doi: 10.3945/ajcn.2008.26568 PubMedCrossRefGoogle Scholar
  68. 68.
    Giles GG, Simpson JA, English DR, Hodge AM, Gertig DM, Macinnis RJ, Hopper JL (2006) Dietary carbohydrate, fibre, glycaemic index, glycaemic load and the risk of postmenopausal breast cancer. Int J Cancer 118:1843–1847. doi: 10.1002/ijc.21548 PubMedCrossRefGoogle Scholar
  69. 69.
    Park Y, Brinton LA, Subar AF, Hollenbeck A, Schatzkin A (2009) Dietary fiber intake and risk of breast cancer in postmenopausal women: the National Institutes of Health-AARP Diet and Health Study. Am J Clin Nutr 90:664–671. doi: 10.3945/ajcn.2009.27758 PubMedCrossRefGoogle Scholar
  70. 70.
    Larsson SC, Bergkvist L, Wolk A (2009) Long-term dietary calcium intake and breast cancer risk in a prospective cohort of women. Am J Clin Nutr 89:277–282. doi: 10.3945/ajcn.2008.26704 PubMedCrossRefGoogle Scholar
  71. 71.
    Sellers TA, Vierkant RA, Cerhan JR, Gapstur SM et al (2002) Interaction of dietary folate intake, alcohol, and risk of hormone receptor-defined breast cancer in a prospective study of postmenopausal women. Cancer Epidemiol Biomarkers Prev 11:1104–1107PubMedGoogle Scholar
  72. 72.
    Robien K, Cutler GJ, Lazovich D (2007) Vitamin D intake and breast cancer risk in postmenopausal women: the Iowa Women’s Health Study. Cancer Causes Control 18:775–782. doi: 10.1007/s10552-007-9020-x PubMedCrossRefGoogle Scholar
  73. 73.
    Blackmore KM, Lesosky M, Barnett H, Raboud JM, Vieth R, Knight JA (2008) Vitamin D from dietary intake and sunlight exposure and the risk of hormone-receptor-defined breast cancer. Am J Epidemiol 168:915–924. doi: 10.1093/aje/kwn198 PubMedCrossRefGoogle Scholar
  74. 74.
    Rainville C, Khan Y, Tisman G (2009) Triple negative breast cancer patients presenting with low serum vitamin D levels: a case series. Cases J 2:8390. doi: 10.4076/1757-1626-2-8390 PubMedCrossRefGoogle Scholar
  75. 75.
    Dallal CM, Sullivan-Halley J, Ross RK, Wang Y et al (2007) Long-term recreational physical activity and risk of invasive and in situ breast cancer: the California teachers study. Arch Intern Med 167:408–415. doi: 10.1001/archinte.167.4.408 PubMedCrossRefGoogle Scholar
  76. 76.
    Peters TM, Schatzkin A, Gierach GL, Moore SC et al (2009) Physical activity and postmenopausal breast cancer risk in the NIH-AARP diet and health study. Cancer Epidemiol Biomarkers Prev 18:289–296. doi: 10.1158/1055-9965.EPI-08-0768 PubMedCrossRefGoogle Scholar
  77. 77.
    Adams SA, Matthews CE, Hebert JR, Moore CG et al (2006) Association of physical activity with hormone receptor status: the Shanghai Breast Cancer Study. Cancer Epidemiol Biomarkers Prev 15:1170–1178. doi: 10.1158/1055-9965.EPI-05-0993 PubMedCrossRefGoogle Scholar
  78. 78.
    Bardia A, Hartmann LC, Vachon CM, Vierkant RA et al (2006) Recreational physical activity and risk of postmenopausal breast cancer based on hormone receptor status. Arch Intern Med 166:2478–2483. doi: 10.1001/archinte.166.22.2478 PubMedCrossRefGoogle Scholar
  79. 79.
    Berclaz G, Li S, Price KN, Coates AS et al (2004) Body mass index as a prognostic feature in operable breast cancer: the International Breast Cancer Study Group experience. Ann Oncol 15:875–884PubMedCrossRefGoogle Scholar
  80. 80.
    Dignam JJ, Wieand K, Johnson KA, Raich P, Anderson SJ, Somkin C, Wickerham DL (2006) Effects of obesity and race on prognosis in lymph node-negative, estrogen receptor-negative breast cancer. Breast Cancer Res Treat 97:245–254. doi: 10.1007/s10549-005-9118-3 PubMedCrossRefGoogle Scholar
  81. 81.
    Olsen A, Tjonneland A, Thomsen BL, Loft S et al (2003) Fruits and vegetables intake differentially affects estrogen receptor negative and positive breast cancer incidence rates. J Nutr 133:2342–2347PubMedGoogle Scholar
  82. 82.
    Enger SM, Ross RK, Paganini-Hill A, Carpenter CL, Bernstein L (2000) Body size, physical activity, and breast cancer hormone receptor status: results from two case-control studies. Cancer Epidemiol Biomarkers Prev 9:681–687PubMedGoogle Scholar
  83. 83.
    Lu C, Speers C, Zhang Y, Xu X et al (2003) Effect of epidermal growth factor receptor inhibitor on development of estrogen receptor-negative mammary tumors. J Natl Cancer Inst 95:1825–1833PubMedGoogle Scholar
  84. 84.
    Wu K, Zhang Y, Xu XC, Hill J et al (2002) The retinoid X receptor-selective retinoid, LGD1069, prevents the development of estrogen receptor-negative mammary tumors in transgenic mice. Cancer Res 62:6376–6380PubMedGoogle Scholar
  85. 85.
    Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8:R76. doi: 10.1186/gb-2007-8-5-r76 PubMedCrossRefGoogle Scholar
  86. 86.
    Bachelier R, Xu X, Li C, Qiao W, Furth PA, Lubet RA, Deng CX (2005) Effect of bilateral oophorectomy on mammary tumor formation in BRCA1 mutant mice. Oncol Rep 14:1117–1120PubMedGoogle Scholar
  87. 87.
    Jones LP, Li M, Halama ED, Ma Y et al (2005) Promotion of mammary cancer development by tamoxifen in a mouse model of Brca1-mutation-related breast cancer. Oncogene 24:3554–3562. doi: 10.1038/sj.onc.1208426 PubMedCrossRefGoogle Scholar
  88. 88.
    Farmer H, McCabe N, Lord CJ, Tutt AN et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921. doi: 10.1038/nature03445 PubMedCrossRefGoogle Scholar
  89. 89.
    Herschkowitz JI, He X, Fan C, Perou CM (2008) The functional loss of the retinoblastoma tumour suppressor is a common event in basal-like and luminal B breast carcinomas. Breast Cancer Res 10:R75. doi: 10.1186/bcr2142 PubMedCrossRefGoogle Scholar
  90. 90.
    Green JE, Shibata MA, Shibata E, Moon RC, Anver MR, Kelloff G, Lubet R (2001) 2-Difluoromethylornithine and dehydroepiandrosterone inhibit mammary tumor progression but not mammary or prostate tumor initiation in C3(1)/SV40 T/t-antigen transgenic mice. Cancer Res 61:7449–7455PubMedGoogle Scholar
  91. 91.
    Wu K, Kim HT, Rodriquez JL, Hilsenbeck SG et al (2002) Suppression of mammary tumorigenesis in transgenic mice by the RXR-selective retinoid, LGD1069. Cancer Epidemiol Biomarkers Prev 11:467–474PubMedGoogle Scholar
  92. 92.
    Carey LA, Dees EC, Sawyer L, Gatti L et al (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13:2329–2334. doi: 10.1158/1078-0432.CCR-06-1109 PubMedCrossRefGoogle Scholar
  93. 93.
    Fong PC, Boss DS, Yap TA, Tutt A et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134. doi: 10.1056/NEJMoa0900212 PubMedCrossRefGoogle Scholar
  94. 94.
    Natrajan R, Weigelt B, Mackay A, Geyer FC et al (2009) An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like, HER2 and luminal cancers. Breast Cancer Res Treat. doi:  10.1007/s10549-009-0501-3
  95. 95.
    Kagawa-Singer M, Dadia AV, Yu MC, Surbone A (2010) Cancer, culture, and health disparities: time to chart a new course? CA Cancer J Clin 60:12–39. doi: 10.3322/caac.20051 PubMedCrossRefGoogle Scholar
  96. 96.
    Olopade OI, Fackenthal JD, Dunston G, Tainsky MA, Collins F, Whitfield-Broome C (2003) Breast cancer genetics in African Americans. Cancer 97:236–245. doi: 10.1002/cncr.11019 PubMedCrossRefGoogle Scholar
  97. 97.
    Nanda R, Schumm LP, Cummings S, Fackenthal JD et al (2005) Genetic testing in an ethnically diverse cohort of high-risk women: a comparative analysis of BRCA1 and BRCA2 mutations in American families of European and African ancestry. JAMA 294:1925–1933. doi: 10.1001/jama.294.15.1925 PubMedCrossRefGoogle Scholar
  98. 98.
    Caulfield T, Fullerton SM, Ali-Khan SE, Arbour L et al (2009) Race and ancestry in biomedical research: exploring the challenges. Genome Med 1:8. doi: 10.1186/gm8 PubMedCrossRefGoogle Scholar
  99. 99.
    Giri VN, Egleston B, Ruth K, Uzzo RG et al (2009) Race, genetic West African ancestry, and prostate cancer prediction by prostate-specific antigen in prospectively screened high-risk men. Cancer Prev Res (Phila Pa) 2:244–250. doi: 10.1158/1940-6207.CAPR-08-0150 Google Scholar
  100. 100.
    Ross SA (2003) Diet and DNA methylation interactions in cancer prevention. Ann NY Acad Sci 983:197–207PubMedCrossRefGoogle Scholar
  101. 101.
    Ross SA, Dwyer J, Umar A, Kagan J, Verma M, Van Bemmel DM, Dunn BK (2008) Introduction: diet, epigenetic events and cancer prevention. Nutr Rev 66(Suppl 1):S1–S6. doi: 10.1111/j.1753-4887.2008.00055.x PubMedCrossRefGoogle Scholar
  102. 102.
    Levin BE (2008) Epigenetic influences on food intake and physical activity level: review of animal studies. Obesity (Silver Spring) 16(Suppl 3):S51–S54. doi: 10.1038/oby.2008.518 CrossRefGoogle Scholar
  103. 103.
    Lee MP, Dunn BK (2008) Influence of genetic inheritance on global epigenetic states and cancer risk prediction with DNA methylation signature: challenges in technology and data analysis. Nutr Rev 66(Suppl 1):S69–S72. doi: 10.1111/j.1753-4887.2008.00072.x PubMedCrossRefGoogle Scholar
  104. 104.
    AHRQ (2008) 2007 National Healthcare Disparities Reports 2007. Rockville, MD: US Department of Health and Human Services, Agency for Healthcare Research and Quality. Report No.: AHRQ Pub. No. 08-0041Google Scholar
  105. 105.
    Anonymous (2009) The right target: how survival is affected by race/ethnicity, socioeconomic status. HemOnc Today 10:1Google Scholar
  106. 106.
    Goss E, Lopez AM, Brown CL, Wollins DS, Brawley OW, Raghavan D (2009) American society of clinical oncology policy statement: disparities in cancer care. J Clin Oncol 27:2881–2885. doi: 10.1200/JCO.2008.21.1680 PubMedCrossRefGoogle Scholar
  107. 107.
    IOM (2003) Unequal treatment: confronting racial and ethnic disparities in healthcare. In: Smedley BD, Stith AY, Nelson AR (eds) Institute of Medicine, Washington, DCGoogle Scholar
  108. 108.
    Dawood S, Broglio K, Kau SW, Green MC et al (2009) Triple receptor-negative breast cancer: the effect of race on response to primary systemic treatment and survival outcomes. J Clin Oncol 27:220–226. doi: 10.1200/JCO.2008.17.9952 PubMedCrossRefGoogle Scholar
  109. 109.
    Albain KS, Unger JM, Crowley JJ, Coltman CA Jr, Hershman DL (2009) Racial disparities in cancer survival among randomized clinical trials patients of the Southwest Oncology Group. J Natl Cancer Inst 101:984–992. doi: 10.1093/jnci/djp175 PubMedCrossRefGoogle Scholar

Copyright information

© US Government 2010

Authors and Affiliations

  • Barbara K. Dunn
    • 1
    • 4
  • Tanya Agurs-Collins
    • 2
  • Doris Browne
    • 3
  • Ronald Lubet
    • 1
  • Karen A. Johnson
    • 1
  1. 1.Division of Cancer PreventionNational Cancer InstituteBethesdaUSA
  2. 2.Division of Cancer Control and Population SciencesNational Cancer InstituteBethesdaUSA
  3. 3.Browne and Associates, IncWashingtonUSA
  4. 4.Basic Prevention Science Research Group, Division of Cancer PreventionNational Cancer InstituteBethesdaUSA

Personalised recommendations