Advertisement

Breast Cancer Research and Treatment

, Volume 125, Issue 2, pp 351–362 | Cite as

The β2-adrenergic receptor and Her2 comprise a positive feedback loop in human breast cancer cells

  • Ming Shi
  • Dan Liu
  • Huijun DuanEmail author
  • Lu Qian
  • Lina Wang
  • Lijia Niu
  • Huipeng Zhang
  • Zheng Yong
  • Zehui Gong
  • Lun Song
  • Ming Yu
  • Meiru Hu
  • Qing Xia
  • Beifen Shen
  • Ning GuoEmail author
Preclinical study

Abstract

In this study, β2-AR level was found to be up-regulated in MCF-7 cells overexpressing Her2 (MCF-7/Her2). Correlation of β2-AR level with Her2 status was demonstrated in breast cancer tissue samples. Constitutive phosphorylation of ERK, mRNA expression up-regulation of catecholamine-synthesis enzymes, and increased epinephrine release were detected in MCF-7/Her2 cells. β2-AR expression induced by epinephrine and involvement of ERK signaling were validated. The data indicate that Her2 overexpression and excessive phosphorylation of ERK cause epinephrine autocrine release from breast cancer cells, resulting in up-regulation of β2-AR expression. The data also showed that catecholamine prominently stimulated Her2 mRNA expression and promoter activity. The activation and nuclear translocation of STAT3 triggered by isoproterenol were observed. Enhanced binding activities of STAT3 to the Her2 promoter after isoproterenol stimulation were verified. Using STAT3 shRNA and dominant negative STAT3 mutant, the role of STAT3 in isoproterenol-induced Her2 expression was further confirmed. The data support a model where β2-AR and Her2 comprise a positive feedback loop in human breast cancer cells.

Keywords

β2-AR Her2 STAT3 ERK Breast cancer 

Notes

Acknowledgment

We are very grateful to Drs. Bromber and Darnell for providing STAT3-dominant negative construct. This study is supported by the National Basic Research Program of China (973 Program, No. 2006CB504305 and 2010CB911904), the National High-Tech Research and Development Plan (863 Program, No. 2006AA02A245), the National Key Technologies R&D Program for New Drugs (2008ZX10004-015, 2009ZX09301-002, and 2009ZX09103-619), the Grand Science and Technology Special Program concerning prevention and treatment of infectious diseases (2008ZX10004-015), and the National Natural Science Foundation of China (No. 30771981, 30901766, and 30972690).

References

  1. 1.
    Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650CrossRefPubMedGoogle Scholar
  2. 2.
    Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296:1636–1639CrossRefPubMedGoogle Scholar
  3. 3.
    Spiegel AM, Weinstein LS (2004) Inherited diseases involving g proteins and g protein-coupled receptors. Annu Rev Med 55:27–39CrossRefPubMedGoogle Scholar
  4. 4.
    Dang H, Elliott JJ, Lin AL et al (2008) Mitogen-activated protein kinase up-regulation and activation during rat parotid gland atrophy and regeneration: role of epidermal growth factor and beta2-adrenergic receptors. Differentiation 76:546–557CrossRefPubMedGoogle Scholar
  5. 5.
    Daub H, Weiss FU, Wallasch C et al (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379:557–560CrossRefPubMedGoogle Scholar
  6. 6.
    Gavi S, Shumay E, Wang HY et al (2006) G-protein-coupled receptors and tyrosine kinases: crossroads in cell signaling and regulation. Trends Endocrinol Metab 17:48–54CrossRefPubMedGoogle Scholar
  7. 7.
    van Biesen T, Hawes BE, Raymond JR et al (1996) G(o)-protein alpha-subunits activate mitogen-activated protein kinase via a novel protein kinase C-dependent mechanism. J Biol Chem 271:1266–1269CrossRefPubMedGoogle Scholar
  8. 8.
    Rao GN, Delafontaine P, Runge MS (1995) Thrombin stimulates phosphorylation of insulin-like growth factor-1 receptor, insulin receptor substrate-1, and phospholipase C-gamma 1 in rat aortic smooth muscle cells. J Biol Chem 270:27871–27875CrossRefPubMedGoogle Scholar
  9. 9.
    Daub H, Wallasch C, Lankenau A et al (1997) Signal characteristics of G protein-transactivated EGF receptor. EMBO J 16:7032–7044CrossRefPubMedGoogle Scholar
  10. 10.
    Herrlich A, Daub H, Knebel A et al (1998) Ligand-independent activation of platelet-derived growth factor receptor is a necessary intermediate in lysophosphatidic, acid-stimulated mitogenic activity in L cells. Proc Natl Acad Sci USA 95:8985–8990CrossRefPubMedGoogle Scholar
  11. 11.
    Prenzel N, Zwick E, Daub H et al (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402:884–888PubMedGoogle Scholar
  12. 12.
    Baselga J, Swain SM (2009) Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 9:463–475CrossRefPubMedGoogle Scholar
  13. 13.
    Lohrisch C, Piccart M (2001) An overview of HER2. Semin Oncol 28:3–11CrossRefPubMedGoogle Scholar
  14. 14.
    Shang ZJ, Liu K, de Liang F (2009) Expression of beta2-adrenergic receptor in oral squamous cell carcinoma. J Oral Pathol Med 38:371–376CrossRefPubMedGoogle Scholar
  15. 15.
    Ramberg H, Eide T, Krobert KA et al (2008) Hormonal regulation of beta2-adrenergic receptor level in prostate cancer. Prostate 68:1133–1142CrossRefPubMedGoogle Scholar
  16. 16.
    Yang EV, Kim SJ, Donovan EL et al (2009) Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav Immun 23:267–275CrossRefPubMedGoogle Scholar
  17. 17.
    Negro A, Brar BK, Gu Y et al (2006) erbB2 is required for G protein-coupled receptor signaling in the heart. Proc Natl Acad Sci USA 103:15889–15893CrossRefPubMedGoogle Scholar
  18. 18.
    Yuan G, Qian L, Shi M et al (2008) HER2-dependent MMP-7 expression is mediated by activated STAT3. Cell Signal 20:1284–1291CrossRefPubMedGoogle Scholar
  19. 19.
    Smyth LM, Bobalova J, Mendoza MG et al (2004) Release of beta-nicotinamide adenine dinucleotide upon stimulation of postganglionic nerve terminals in blood vessels and urinary bladder. J Biol Chem 279:48893–48903CrossRefPubMedGoogle Scholar
  20. 20.
    Hu P, Zhou T, Qian L et al (2006) Sequestering ErbB2 in endoplasmic reticulum by its autoinhibitor from translocation to cell surface: an autoinhibition mechanism of ErbB2 expression. Biochem Biophys Res Commun 342:19–27CrossRefPubMedGoogle Scholar
  21. 21.
    Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine hydroxylase: the initial step in norepinephrine biosynthesis. J Biol Chem 239:2910–2917PubMedGoogle Scholar
  22. 22.
    Fernstrom MH, Baker RL, Fernstrom JD (1989) In vivo tyrosine hydroxylation rate in retina: effects of phenylalanine and tyrosine administration in rats pretreated with p-chlorophenylalanine. Brain Res 499:291–298CrossRefPubMedGoogle Scholar
  23. 23.
    Ribeiro P, Pigeon D, Kaufman S (1991) The hydroxylation of phenylalanine and tyrosine by tyrosine hydroxylase from cultured pheochromocytoma cells. J Biol Chem 266:16207–16211PubMedGoogle Scholar
  24. 24.
    Iuvone PM, Galli CL, Garrison-Gund CK et al (1978) Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons. Science 202:901–902CrossRefPubMedGoogle Scholar
  25. 25.
    Landen CN Jr, Lin YG, Armaiz Pena GN et al (2007) Neuroendocrine modulation of signal transducer and activator of transcription-3 in ovarian cancer. Cancer Res 67:10389–10396CrossRefPubMedGoogle Scholar
  26. 26.
    Qian L, Chen L, Shi M et al (2006) A novel cis-acting element in Her2 promoter regulated by Stat3 in mammary cancer cells. Biochem Biophys Res Commun 345:660–668CrossRefPubMedGoogle Scholar
  27. 27.
    Dhanasekaran N, Heasley LE, Johnson GL (1995) G protein-coupled receptor systems involved in cell growth and oncogenesis. Endocr Rev 16:259–270PubMedGoogle Scholar
  28. 28.
    van Biesen T, Luttrell LM, Hawes BE et al (1996) Mitogenic signaling via G protein-coupled receptors. Endocr Rev 17:698–714CrossRefPubMedGoogle Scholar
  29. 29.
    Liu X, Wu WK, Yu L et al (2008) Epidermal growth factor-induced esophageal cancer cell proliferation requires transactivation of beta-adrenoceptors. J Pharmacol Exp Ther 326:69–75CrossRefPubMedGoogle Scholar
  30. 30.
    Faure M, Voyno-Yasenetskaya TA, Bourne HR (1994) cAMP and beta gamma subunits of heterotrimeric G proteins stimulate the mitogen-activated protein kinase pathway in COS-7 cells. J Biol Chem 269:7851–7854PubMedGoogle Scholar
  31. 31.
    Cakir Y, Plummer HK III, Tithof PK et al (2002) Beta-adrenergic and arachidonic acid-mediated growth regulation of human breast cancer cell lines. Int J Oncol 21:153–157PubMedGoogle Scholar
  32. 32.
    Fitzgerald PJ (2009) Is norepinephrine an etiological factor in some types of cancer? Int J Cancer 124:257–263CrossRefPubMedGoogle Scholar
  33. 33.
    Palermo-Neto J, de Oliveira Massoco C, Robespierre de Souza W (2003) Effects of physical and psychological stressors on behavior, macrophage activity, and Ehrlich tumor growth. Brain Behav Immun 17:43–54CrossRefPubMedGoogle Scholar
  34. 34.
    Brenner GJ, Felten SY, Felten DL et al (1992) Sympathetic nervous system modulation of tumor metastases and host defense mechanisms. J Neuroimmunol 37:191–201CrossRefPubMedGoogle Scholar
  35. 35.
    van Biesen T, Hawes BE, Luttrell DK et al (1995) Receptor-tyrosine-kinase- and G beta gamma-mediated MAP kinase activation by a common signalling pathway. Nature 376:781–784CrossRefPubMedGoogle Scholar
  36. 36.
    Luttrell LM, Della Rocca GJ, van Biesen T et al (1997) Gbetagamma subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. A scaffold for G protein-coupled receptor-mediated Ras activation. J Biol Chem 272:4637–4644CrossRefPubMedGoogle Scholar
  37. 37.
    Li YM, Pan Y, Wei Y et al (2004) Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 6:459–469CrossRefPubMedGoogle Scholar
  38. 38.
    Yang EV, Sood AK, Chen M et al (2006) Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res 66:10357–10364CrossRefPubMedGoogle Scholar
  39. 39.
    Metcalfe C, Davey Smith G, Macleod J et al (2007) The role of self-reported stress in the development of breast cancer and prostate cancer: a prospective cohort study of employed males and females with 30 years of follow-up. Eur J Cancer 43:1060–1065CrossRefPubMedGoogle Scholar
  40. 40.
    Thornton LM, Andersen BL, Carson WE III (2008) Immune, endocrine, and behavioral precursors to breast cancer recurrence: a case-control analysis. Cancer Immunol Immunother 57:1471–1481CrossRefPubMedGoogle Scholar
  41. 41.
    Smythies J (2005) Section III. The norepinephrine system. Int Rev Neurobiol 64:173–211CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Ming Shi
    • 1
  • Dan Liu
    • 2
  • Huijun Duan
    • 2
    Email author
  • Lu Qian
    • 1
  • Lina Wang
    • 3
  • Lijia Niu
    • 3
  • Huipeng Zhang
    • 3
  • Zheng Yong
    • 4
  • Zehui Gong
    • 4
  • Lun Song
    • 1
  • Ming Yu
    • 1
  • Meiru Hu
    • 1
  • Qing Xia
    • 1
  • Beifen Shen
    • 1
  • Ning Guo
    • 1
    Email author
  1. 1.Department of Molecular ImmunologyInstitute of Basic Medical SciencesBeijingPeople’s Republic of China
  2. 2.Department of PathologyHebei Medical UniversityShijiazhuangPeople’s Republic of China
  3. 3.Department of the Obstetrics and GynecologyPeople’s Armed Police Corps HospitalBeijingPeople’s Republic of China
  4. 4.The Laboratory of Evaluation for New Drug, Institute of Pharmacology and ToxicologyBeijingPeople’s Republic of China

Personalised recommendations