Advertisement

Breast Cancer Research and Treatment

, Volume 123, Issue 2, pp 581–585 | Cite as

Absence of genomic BRCA1 and BRCA2 rearrangements in Ashkenazi breast and ovarian cancer families

  • Zsofia K. Stadler
  • Emmanuel Saloustros
  • Nichole A. L. Hansen
  • Alice E. Schluger
  • Noah D. Kauff
  • Kenneth Offit
  • Mark E. RobsonEmail author
Brief Report

Abstract

A substantial proportion of Ashkenazi Jewish (AJ) breast and ovarian cancer families carry one of three founder mutations in BRCA1 (185delAG, 5382InsC) and BRCA2 (6174delT). Non-founder mutations are identified in another 2–4% of such families. The extent to which major genomic rearrangements in BRCA contribute to breast and ovarian cancer in the Ashkenazim is not well understood. We identified AJ individuals with breast and/or ovarian cancer undergoing hereditary breast/ovarian cancer risk assessment since 2006 without evidence of a deleterious mutation on BRCA gene sequencing who were screened for major gene rearrangements in BRCA1 and BRCA2. For each proband, the pre-test probability of identifying a deleterious BRCA mutation was estimated using the Myriad II model. We identified 108 affected individuals who underwent large rearrangement testing (80 breast cancer, 19 ovarian cancer, nine both breast and ovarian cancer). The mean estimated AJ specific pre-test probability of a deleterious mutation in BRCA1 and BRCA2 was 24.7% (range: 4.4–88.9%). No genomic rearrangements were identified in either the entire group or in the 26 subjects with pre-test mutation prevalence estimates exceeding 30%. Major gene rearrangements involving the BRCA1 and BRCA2 genes appear to contribute little to the burden of inherited predisposition to breast and ovarian cancer in the Ashkenazim.

Keywords

Rearrangements BRCA Breast cancer Founder mutations Jewish 

References

  1. 1.
    Robson M, Offit K (2007) Management of an inherited predisposition to breast cancer. N Engl J Med 357:154–162CrossRefPubMedGoogle Scholar
  2. 2.
    Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the 17 linked breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71CrossRefPubMedGoogle Scholar
  3. 3.
    Wooster R, Bignell G, Lancaster J et al (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792CrossRefPubMedGoogle Scholar
  4. 4.
    Tavtigian SV, Simard J, Rommens J et al (1996) The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat Genet 12:333–337CrossRefPubMedGoogle Scholar
  5. 5.
    Ford D, Easton DF, Stratton M et al (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am J Hum Genet 62:676–689CrossRefPubMedGoogle Scholar
  6. 6.
    King MC, Marks JH, Mandell JB (2003) Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302:643–646CrossRefPubMedGoogle Scholar
  7. 7.
    Oddoux C, Struewing JP, Clayton CM et al (1996) The carrier frequency of the BRCA2 6174delT mutation among Ashkenazi Jewish individuals is approximately 1%. Nat Genet 14:188–190CrossRefPubMedGoogle Scholar
  8. 8.
    Phelan C, Kwan E, Jack E et al (2002) A low frequency of non-founder BRCA1 mutations in Ashkenazi Jewish breast-ovarian cancer families. Hum Mutat 20:352–357CrossRefPubMedGoogle Scholar
  9. 9.
    Kauff ND, Perez-Segura P, Robson ME et al (2002) Incidence of non-founder BRCA1 and BRCA2 mutations in high risk Ashkenazi breast and ovarian cancer families. J Med Genet 39:611–614CrossRefPubMedGoogle Scholar
  10. 10.
    Frank TS, Deffenbaugh AM, Reid JE et al (2002) Clinical characteristics of individuals with germline mutations in BRCA1 and BRCA2: analysis of 10,000 individuals. J Clin Oncol 20:1480–1490CrossRefPubMedGoogle Scholar
  11. 11.
    Puget N, Sinilnikova OM, Stoppa-Lyonnet D et al (1999) An Alu-mediated 6-kb duplication in the BRCA1 gene: a new founder mutation? Am J Hum Genet 64:300–302CrossRefPubMedGoogle Scholar
  12. 12.
    Petrij-Bosch A, Peelen T, van Vliet M et al (1997) BRCA1 genomic deletions are major founder mutations in Dutch breast cancer patients. Nat Genet 17:341–345CrossRefPubMedGoogle Scholar
  13. 13.
    Gad S, Caux-Moncoutier V, Pagès-Berhouet S et al (2002) Significant contribution of large BRCA1 gene rearrangements in 120 French breast and ovarian cancer families. Oncogene 21:6841–6847CrossRefPubMedGoogle Scholar
  14. 14.
    Agata S, Viel A, Della Puppa L et al (2006) Prevalence of BRCA1 genomic rearrangements in a large cohort of Italian breast and breast/ovarian cancer families without detectable BRCA1 and BRCA2 point mutations. Genes Chromosomes Cancer 45:791–797CrossRefPubMedGoogle Scholar
  15. 15.
    Ramus SJ, Harrington PA, Pye C et al (2007) Contribution of BRCA1 and BRCA2 mutations to inherited ovarian cancer. Hum Mutat 28:1207–1215CrossRefPubMedGoogle Scholar
  16. 16.
    Woodward AM, Davis TA, Silva AG et al (2005) Large genomic rearrangements of both BRCA2 and BRCA1 are a feature of the inherited breast/ovarian cancer phenotype in selected families. J Med Genet 42(5):e31CrossRefPubMedGoogle Scholar
  17. 17.
    Palma MD, Domchek SM, Stopfer J et al (2008) The relative contribution of point mutations and genomic rearrangements in BRCA1 and BRCA2 in high-risk breast cancer families. Cancer Res 68:7006–7014CrossRefPubMedGoogle Scholar
  18. 18.
    Thomassen M, Gerdes AM, Cruger D et al (2006) Low frequency of large genomic rearrangements of BRCA1 and BRCA2 in western Denmark. Cancer Genet Cytogenet 168:168–171CrossRefPubMedGoogle Scholar
  19. 19.
    Casilli F, Tournier I, Sinilnikova OM et al (2006) The contribution of germline rearrangements to the spectrum of BRCA2 mutations. J Med Genet 43:e49CrossRefPubMedGoogle Scholar
  20. 20.
    Wang T, Lerer I, Gueta Z et al (2005) A deletion/insertion mutation in the BRCA2 gene in a breast cancer family: a possible role of the Alu-polyA tail in the evolution of the deletion. Genes Chromosomes Cancer 31:91–95CrossRefGoogle Scholar
  21. 21.
    Agata S, Dalla Palma M, Callegaro M et al (2005) Large genomic deletions inactivate the BRCA2 gene in breast cancer families. J Med Genet 42:e64CrossRefPubMedGoogle Scholar
  22. 22.
    Couch FJ, DeShano ML, Blackwood MA et al (1997) BRCA1 mutations in women attending clinics that evaluate the risk of breast cancer. N Engl J Med 336:1409–1415CrossRefPubMedGoogle Scholar
  23. 23.
    Shattuck-Eidens D, Oliphant A, McClure M et al (1997) BRCA1 sequence analysis in women at high risk for susceptibility mutations: risk factor analysis and implications for genetic testing. JAMA 278:1242–1250CrossRefPubMedGoogle Scholar
  24. 24.
    Walsh T, Casadei S, Coats KH et al (2006) Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA 295:1379–1388CrossRefPubMedGoogle Scholar
  25. 25.
    Distelman-Menachem T, Shapira T, Laitman Y et al (2009) Analysis of BRCA1/BRCA2 genes’ contribution to breast cancer susceptibility in high risk Jewish Ashkenazi women. Fam Cancer 8:127–133CrossRefPubMedGoogle Scholar
  26. 26.
    Offit K, Gilewski T, McGuire P et al (1996) Germline BRCA1 185delAG mutations in Jewish women with breast cancer. Lancet 347:1643–1645CrossRefPubMedGoogle Scholar
  27. 27.
    Neuhausen S, Gilewski T, Norton L et al (1996) Recurrent BRCA2 6174delT mutations in Ashkenazi Jewish women affected by breast cancer. Nat Genet 13:126–128CrossRefPubMedGoogle Scholar
  28. 28.
    Nafa K, Angell J, Bonavita L et al (1999) Direct detection of common mutations in the BRCA1, BRCA2 genes by amplified created restriction enzyme site (ACRES). Am J Hum Genet 65:A58Google Scholar
  29. 29.
    Frank TS, Manley SA, Olopade OI et al (1998) Sequence analysis of BRCA1 and BRCA2: correlation of mutations with family history and ovarian cancer risk. J Clin Oncol 16:2417–2425PubMedGoogle Scholar
  30. 30.
    National Comprehensive Cancer Network (NCCN) Clinical practice guidelines in oncology. http://www.nccn.org/professionals/physician_gls/f_guidelines.asp. Accessed 18 December 2009
  31. 31.
    Barcenas CH, Hosain GM, Arun B et al (2006) Assessing BRCA carrier probabilities in extended families. J Clin Oncol 24:354–360CrossRefPubMedGoogle Scholar
  32. 32.
    Shiri-Sverdlov R, Oefner P, Green L et al (2000) Mutational analyses of BRCA1 and BRCA2 in Ashkenazi and non-Ashkenazi Jewish women with familial breast and ovarian cancer. Hum Mutat 16:491–501CrossRefPubMedGoogle Scholar
  33. 33.
    Pharoah PD, Antoniou AC, Easton DF et al (2008) Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med 358(26):2796–2803CrossRefPubMedGoogle Scholar
  34. 34.
    Foulkes WD (2008) Inherited susceptibility to common cancers. N Engl J Med 359(20):2143–2153CrossRefPubMedGoogle Scholar
  35. 35.
    Gold B, Kirchhoff T, Stefanov S et al. (2008) Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33. Proc Natl Acad Sci USA 105(11):4340–4365. Epub 2008 Mar 7Google Scholar
  36. 36.
    Easton DF, Pooley KA, Dunning AM et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447(7148):1087–1093CrossRefPubMedGoogle Scholar
  37. 37.
    Robson ME, Storm CD, Weitzel J et al. (2010) American society of clinical oncology policy statement update: genetic and genomic testing for cancer susceptibility. J Clin Oncol 28:893–901CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Zsofia K. Stadler
    • 1
  • Emmanuel Saloustros
    • 2
  • Nichole A. L. Hansen
    • 1
  • Alice E. Schluger
    • 1
  • Noah D. Kauff
    • 1
  • Kenneth Offit
    • 1
  • Mark E. Robson
    • 1
    Email author
  1. 1.Department of Medicine, Clinical Genetics ServiceMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.Department of Medical OncologyUniversity Hospital of HeraklionHeraklion, CreteGreece

Personalised recommendations