Breast Cancer Research and Treatment

, Volume 124, Issue 2, pp 377–386 | Cite as

Parallel inhibition of cell growth and induction of cell migration and invasion in breast cancer cells by bone morphogenetic protein 4

  • Johanna M. Ketolainen
  • Emma-Leena Alarmo
  • Vilppu J. Tuominen
  • Anne Kallioniemi
Preclinical Study


Bone morphogenetic proteins (BMP) are extracellular signaling molecules that belong to the transforming growth factor β (TGFβ) superfamily. Bone morphogenetic proteins have diverse roles during development where they regulate proliferation, differentiation, and apoptosis in many different cell types by modulating the transcription of specific target genes. BMPs have also been implicated in both promotion and inhibition of cancer progression. We have recently shown that BMP4 is commonly expressed in breast cancer but its functional significance has not been previously explored. Our data demonstrate that in all nine breast cancer cell lines studied, BMP4 treatment leads to a dramatic growth suppression as a result of the induction of G1 arrest of the cell cycle. At the same time, BMP4 stimulates cell migration and invasion in a subset of these breast cancer cell lines. The BMP4-induced phenotypic changes were mediated through the activation of the canonical SMAD signaling pathway whereas no activation of MAP-kinases ERK1/2 or p38 was detected. Our results thus implicate that BMP4 is an important regulator of key phenotypic characteristics of cancer cells, cell growth, cell migration, and invasion, and that, similar to TGFβ, it possesses both tumor suppressive and oncogenic properties in breast cancer.


BMP Breast cancer G1 arrest Cell proliferation Cell migration Invasion 



The authors greatly appreciate the skillful assistance of Ms. Kati Rouhento. This study was partly supported by grants from The Sigrid Juselius Foundation, The Medical Research Fund of the Tampere University Hospital, and the Finnish Cancer Organizations.

Supplementary material

10549_2010_808_MOESM2_ESM.pdf (32 kb)
Supplemental Fig. 1BMP4 treatment does not induce epithelial-mesenchymal transition. Cells were treated with BMP4 (100 ng/ml) or vehicle for three days and then the E-cadherin and vimentin mRNA levels were measured using RT-PCR (32 kb)


  1. 1.
    von Bubnoff A, Cho KW (2001) Intracellular BMP signaling regulation in vertebrates: pathway or network? Dev Biol 239:1–14CrossRefGoogle Scholar
  2. 2.
    Nohe A, Keating E, Knaus P, Petersen NO (2004) Signal transduction of bone morphogenetic protein receptors. Cell Signal 16:291–299CrossRefPubMedGoogle Scholar
  3. 3.
    Adam L, Vadlamudi R, Mandal M, Chernoff J, Kumar R (2000) Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1. J Biol Chem 275:12041–12050CrossRefPubMedGoogle Scholar
  4. 4.
    Otani H, Otsuka F, Inagaki K, Takeda M, Miyoshi T, Suzuki J, Mukai T, Ogura T, Makino H (2007) Antagonistic effects of bone morphogenetic protein-4 and -7 on renal mesangial cell proliferation induced by aldosterone through MAPK activation. Am J Physiol Renal Physiol 292:F1513–F1525CrossRefPubMedGoogle Scholar
  5. 5.
    Yang X, Lee PJ, Long L, Trembath RC, Morrell NW (2007) BMP4 induces HO-1 via a Smad-independent, p38MAPK-dependent pathway in pulmonary artery myocytes. Am J Respir Cell Mol Biol 37:598–605CrossRefPubMedGoogle Scholar
  6. 6.
    Kawabata M, Imamura T, Miyazono K (1998) Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev 9:49–61CrossRefPubMedGoogle Scholar
  7. 7.
    Hogan BL (1996) Bone morphogenetic proteins in development. Curr Opin Genet Dev 6:432–438CrossRefPubMedGoogle Scholar
  8. 8.
    Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ (2006) Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet 2:e216CrossRefPubMedGoogle Scholar
  9. 9.
    Blauwkamp MN, Beyer LA, Kabara L, Takemura K, Buck T, King WM, Dolan DF, Barald KF, Raphael Y, Koenig RJ (2007) The role of bone morphogenetic protein 4 in inner ear development and function. Hear Res 225:71–79CrossRefPubMedGoogle Scholar
  10. 10.
    Michos O, Goncalves A, Lopez-Rios J, Tiecke E, Naillat F, Beier K, Galli A, Vainio S, Zeller R (2007) Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development 134:2397–2405CrossRefPubMedGoogle Scholar
  11. 11.
    McCulley DJ, Kang JO, Martin JF, Black BL (2008) BMP4 is required in the anterior heart field and its derivatives for endocardial cushion remodeling, outflow tract septation, and semilunar valve development. Dev Dyn 237:3200–3209CrossRefPubMedGoogle Scholar
  12. 12.
    Cho KW, Kim JY, Song SJ, Farrell E, Eblaghie MC, Kim HJ, Tickle C, Jung HS (2006) Molecular interactions between Tbx3 and Bmp4 and a model for dorsoventral positioning of mammary gland development. Proc Natl Acad Sci USA 103:16788–16793CrossRefPubMedGoogle Scholar
  13. 13.
    Hens JR, Dann P, Zhang JP, Harris S, Robinson GW, Wysolmerski J (2007) BMP4 and PTHrP interact to stimulate ductal outgrowth during embryonic mammary development and to inhibit hair follicle induction. Development 134:1221–1230CrossRefPubMedGoogle Scholar
  14. 14.
    Yuen HF, Chan YP, Cheung WL, Wong YC, Wang X, Chan KW (2008) The prognostic significance of BMP-6 signaling in prostate cancer. Mod Pathol 21:1436–1443CrossRefPubMedGoogle Scholar
  15. 15.
    Motoyama K, Tanaka F, Kosaka Y, Mimori K, Uetake H, Inoue H, Sugihara K, Mori M (2008) Clinical significance of BMP7 in human colorectal cancer. Ann Surg Oncol 15:1530–1537CrossRefPubMedGoogle Scholar
  16. 16.
    Kleeff J, Maruyama H, Ishiwata T, Sawhney H, Friess H, Buchler MW, Korc M (1999) Bone morphogenetic protein 2 exerts diverse effects on cell growth in vitro and is expressed in human pancreatic cancer in vivo. Gastroenterology 116:1202–1216CrossRefPubMedGoogle Scholar
  17. 17.
    Reinholz MM, Iturria SJ, Ingle JN, Roche PC (2002) Differential gene expression of TGF-beta family members and osteopontin in breast tumor tissue: analysis by real-time quantitative PCR. Breast Cancer Res Treat 74:255–269CrossRefPubMedGoogle Scholar
  18. 18.
    Ghosh-Choudhury N, Ghosh-Choudhury G, Celeste A, Ghosh PM, Moyer M, Abboud SL, Kreisberg J (2000) Bone morphogenetic protein-2 induces cyclin kinase inhibitor p21 and hypophosphorylation of retinoblastoma protein in estradiol-treated MCF-7 human breast cancer cells. Biochim Biophys Acta 1497:186–196CrossRefPubMedGoogle Scholar
  19. 19.
    Ghosh-Choudhury N, Woodruff K, Qi W, Celeste A, Abboud SL, Ghosh Choudhury G (2000) Bone morphogenetic protein-2 blocks MDA MB 231 human breast cancer cell proliferation by inhibiting cyclin-dependent kinase-mediated retinoblastoma protein phosphorylation. Biochem Biophys Res Commun 272:705–711CrossRefPubMedGoogle Scholar
  20. 20.
    Pouliot F, Labrie C (2002) Role of Smad1 and Smad4 proteins in the induction of p21WAF1, Cip1 during bone morphogenetic protein-induced growth arrest in human breast cancer cells. J Endocrinol 172:187–198CrossRefPubMedGoogle Scholar
  21. 21.
    Takahashi M, Otsuka F, Miyoshi T, Otani H, Goto J, Yamashita M, Ogura T, Makino H, Doihara H (2008) Bone morphogenetic protein 6 (BMP6) and BMP7 inhibit estrogen-induced proliferation of breast cancer cells by suppressing p38 mitogen-activated protein kinase activation. J Endocrinol 199:445–455CrossRefPubMedGoogle Scholar
  22. 22.
    Alarmo EL, Parssinen J, Ketolainen JM, Savinainen K, Karhu R, Kallioniemi A (2009) BMP7 influences proliferation, migration, and invasion of breast cancer cells. Cancer Lett 275:35–43CrossRefPubMedGoogle Scholar
  23. 23.
    Brubaker KD, Corey E, Brown LG, Vessella RL (2004) Bone morphogenetic protein signaling in prostate cancer cell lines. J Cell Biochem 91:151–160CrossRefPubMedGoogle Scholar
  24. 24.
    Miyazaki H, Watabe T, Kitamura T, Miyazono K (2004) BMP signals inhibit proliferation and in vivo tumor growth of androgen-insensitive prostate carcinoma cells. Oncogene 23:9326–9335CrossRefPubMedGoogle Scholar
  25. 25.
    Beck SE, Jung BH, Fiorino A, Gomez J, Rosario ED, Cabrera BL, Huang SC, Chow JY, Carethers JM (2006) Bone morphogenetic protein signaling and growth suppression in colon cancer. Am J Physiol Gastrointest Liver Physiol 291:G135–G145CrossRefPubMedGoogle Scholar
  26. 26.
    Langenfeld EM, Kong Y, Langenfeld J (2006) Bone morphogenetic protein 2 stimulation of tumor growth involves the activation of Smad-1/5. Oncogene 25:685–692CrossRefPubMedGoogle Scholar
  27. 27.
    Ide H, Yoshida T, Matsumoto N, Aoki K, Osada Y, Sugimura T, Terada M (1997) Growth regulation of human prostate cancer cells by bone morphogenetic protein-2. Cancer Res 57:5022–5027PubMedGoogle Scholar
  28. 28.
    Yang S, Zhong C, Frenkel B, Reddi AH, Roy-Burman P (2005) Diverse biological effect and Smad signaling of bone morphogenetic protein 7 in prostate tumor cells. Cancer Res 65:5769–5777CrossRefPubMedGoogle Scholar
  29. 29.
    Buijs JT, Henriquez NV, van Overveld PG, van der Horst G, Que I, Schwaninger R, Rentsch C, Ten Dijke P, Cleton-Jansen AM, Driouch K, Lidereau R, Bachelier R, Vukicevic S, Clezardin P, Papapoulos SE, Cecchini MG, Lowik CW, van der Pluijm G (2007) Bone morphogenetic protein 7 in the development and treatment of bone metastases from breast cancer. Cancer Res 67:8742–8751CrossRefPubMedGoogle Scholar
  30. 30.
    Clement JH, Raida M, Sanger J, Bicknell R, Liu J, Naumann A, Geyer A, Waldau A, Hortschansky P, Schmidt A, Hoffken K, Wolft S, Harris AL (2005) Bone morphogenetic protein 2 (BMP-2) induces in vitro invasion and in vivo hormone independent growth of breast carcinoma cells. Int J Oncol 27:401–407PubMedGoogle Scholar
  31. 31.
    Raida M, Clement JH, Leek RD, Ameri K, Bicknell R, Niederwieser D, Harris AL (2005) Bone morphogenetic protein 2 (BMP-2) and induction of tumor angiogenesis. J Cancer Res Clin Oncol 131:741–750CrossRefPubMedGoogle Scholar
  32. 32.
    Katsuno Y, Hanyu A, Kanda H, Ishikawa Y, Akiyama F, Iwase T, Ogata E, Ehata S, Miyazono K, Imamura T (2008) Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene 27:6322–6333CrossRefPubMedGoogle Scholar
  33. 33.
    Hjertner O, Hjorth-Hansen H, Borset M, Seidel C, Waage A, Sundan A (2001) Bone morphogenetic protein-4 inhibits proliferation and induces apoptosis of multiple myeloma cells. Blood 97:516–522CrossRefPubMedGoogle Scholar
  34. 34.
    Buckley S, Shi W, Driscoll B, Ferrario A, Anderson K, Warburton D (2004) BMP4 signaling induces senescence and modulates the oncogenic phenotype of A549 lung adenocarcinoma cells. Am J Physiol Lung Cell Mol Physiol 286:L81–L86CrossRefPubMedGoogle Scholar
  35. 35.
    Nishanian TG, Kim JS, Foxworth A, Waldman T (2004) Suppression of tumorigenesis and activation of Wnt signaling by bone morphogenetic protein 4 in human cancer cells. Cancer Biol Ther 3:667–675CrossRefPubMedGoogle Scholar
  36. 36.
    Paez-Pereda M, Giacomini D, Refojo D, Nagashima AC, Hopfner U, Grubler Y, Chervin A, Goldberg V, Goya R, Hentges ST, Low MJ, Holsboer F, Stalla GK, Arzt E (2003) Involvement of bone morphogenetic protein 4 (BMP-4) in pituitary prolactinoma pathogenesis through a Smad/estrogen receptor crosstalk. Proc Natl Acad Sci USA 100:1034–1039CrossRefPubMedGoogle Scholar
  37. 37.
    Deng H, Ravikumar TS, Yang WL (2007) Bone morphogenetic protein-4 inhibits heat-induced apoptosis by modulating MAPK pathways in human colon cancer HCT116 cells. Cancer Lett 256:207–217CrossRefPubMedGoogle Scholar
  38. 38.
    Theriault BL, Shepherd TG, Mujoomdar ML, Nachtigal MW (2007) BMP4 induces EMT and Rho GTPase activation in human ovarian cancer cells. Carcinogenesis 28:1153–1162CrossRefPubMedGoogle Scholar
  39. 39.
    Gordon KJ, Kirkbride KC, How T, Blobe GC (2009) Bone morphogenetic proteins induce pancreatic cancer cell invasiveness through a Smad1-dependent mechanism that involves matrix metalloproteinase-2. Carcinogenesis 30:238–248CrossRefPubMedGoogle Scholar
  40. 40.
    Hamada S, Satoh K, Hirota M, Kimura K, Kanno A, Masamune A, Shimosegawa T (2007) Bone morphogenetic protein 4 induces epithelial-mesenchymal transition through MSX2 induction on pancreatic cancer cell line. J Cell Physiol 213:768–774CrossRefPubMedGoogle Scholar
  41. 41.
    Alarmo EL, Kuukasjarvi T, Karhu R, Kallioniemi A (2007) A comprehensive expression survey of bone morphogenetic proteins in breast cancer highlights the importance of BMP4 and BMP7. Breast Cancer Res Treat 103:239–246CrossRefPubMedGoogle Scholar
  42. 42.
    Shon SK, Kim A, Kim JY, Kim KI, Yang Y, Lim JS (2009) Bone morphogenetic protein-4 induced by NDRG2 expression inhibits MMP-9 activity in breast cancer cells. Biochem Biophys Res Commun 385:198–203CrossRefPubMedGoogle Scholar
  43. 43.
    Alarmo EL, Rauta J, Kauraniemi P, Karhu R, Kuukasjarvi T, Kallioniemi A (2006) Bone morphogenetic protein 7 is widely overexpressed in primary breast cancer. Genes Chromosomes Cancer 45:411–419CrossRefPubMedGoogle Scholar
  44. 44.
    Parssinen J, Kuukasjarvi T, Karhu R, Kallioniemi A (2007) High-level amplification at 17q23 leads to coordinated overexpression of multiple adjacent genes in breast cancer. Br J Cancer 96:1258–1264CrossRefPubMedGoogle Scholar
  45. 45.
    Hong KO, Kim JH, Hong JS, Yoon HJ, Lee JI, Hong SP, Hong SD (2009) Inhibition of Akt activity induces the mesenchymal-to-epithelial reverting transition with restoring E-cadherin expression in KB and KOSCC-25B oral squamous cell carcinoma cells. J Exp Clin Cancer Res 28:28CrossRefPubMedGoogle Scholar
  46. 46.
    Laurila E, Savinainen K, Kuuselo R, Karhu R, Kallioniemi A (2009) Characterization of the 7q21–q22 amplicon identifies ARPC1A, a subunit of the Arp2/3 complex, as a regulator of cell migration and invasion in pancreatic cancer. Genes Chromosomes Cancer 48:330–339CrossRefPubMedGoogle Scholar
  47. 47.
    Parssinen J, Alarmo EL, Karhu R, Kallioniemi A (2008) PPM1D silencing by RNA interference inhibits proliferation and induces apoptosis in breast cancer cell lines with wild-type p53. Cancer Genet Cytogenet 182:33–39CrossRefPubMedGoogle Scholar
  48. 48.
    Rasband WS (1997–2009) ImageJ, U. S. National Institutes of Health, Bethesda, MD, USA.
  49. 49.
    Chow E, Macrae F (2005) A review of juvenile polyposis syndrome. J Gastroenterol Hepatol 20:1634–1640CrossRefPubMedGoogle Scholar
  50. 50.
    Deng H, Ravikumar TS, Yang WL (2009) Overexpression of bone morphogenetic protein 4 enhances the invasiveness of Smad4-deficient human colorectal cancer cells. Cancer Lett 281:220–231CrossRefPubMedGoogle Scholar
  51. 51.
    Maegdefrau U, Amann T, Winklmeier A, Braig S, Schubert T, Weiss TS, Schardt K, Warnecke C, Hellerbrand C, Bosserhoff AK (2009) Bone morphogenetic protein 4 is induced in hepatocellular carcinoma by hypoxia and promotes tumour progression. J Pathol 218:520–529CrossRefPubMedGoogle Scholar
  52. 52.
    Bailey JM, Singh PK, Hollingsworth MA (2007) Cancer metastasis facilitated by developmental pathways: sonic hedgehog, Notch, and bone morphogenic proteins. J Cell Biochem 102:829–839CrossRefPubMedGoogle Scholar
  53. 53.
    Massague J, Gomis RR (2006) The logic of TGFbeta signaling. FEBS Lett 580:2811–2820CrossRefPubMedGoogle Scholar
  54. 54.
    Su D, Zhu S, Han X, Feng Y, Huang H, Ren G, Pan L, Zhang Y, Lu J, Huang B (2009) BMP4-Smad signaling pathway mediates adriamycin-induced premature senescence in lung cancer cells. J Biol Chem 284:12153–12164CrossRefPubMedGoogle Scholar
  55. 55.
    Montesano R, Sarkozi R, Schramek H (2008) Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells. Biochem Biophys Res Commun 374:164–168CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Johanna M. Ketolainen
    • 1
  • Emma-Leena Alarmo
    • 1
  • Vilppu J. Tuominen
    • 2
  • Anne Kallioniemi
    • 1
  1. 1.Laboratory of Cancer Genetics, Institute of Medical TechnologyUniversity of Tampere and Tampere University HospitalTampereFinland
  2. 2.Laboratory of Cancer Biology, Institute of Medical TechnologyUniversity of TampereTampereFinland

Personalised recommendations