Breast Cancer Research and Treatment

, Volume 124, Issue 2, pp 317–326 | Cite as

Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT)

  • F. T. Martin
  • R. M. Dwyer
  • J. Kelly
  • S. Khan
  • J. M. Murphy
  • C. Curran
  • N. Miller
  • E. Hennessy
  • P. Dockery
  • F. P. Barry
  • T. O’Brien
  • M. J. Kerin
Preclinical study

Abstract

Bone marrow-derived mesenchymal stem cells (MSCs) are known to specifically migrate to and engraft at tumour sites. Understanding interactions between cancer cells and MSCs has become fundamental to determining whether MSC-tumour interactions should be harnessed for delivery of therapeutic agents or considered a target for intervention. Breast Cancer Cell lines (MDA-MB-231, T47D & SK-Br3) were cultured alone or on a monolayer of MSCs, and retrieved using epithelial specific magnetic beads. Alterations in expression of 90 genes associated with breast tumourigenicity were analysed using low-density array. Expression of markers of epithelial–mesenchymal transition (EMT) and array results were validated using RQ-PCR. Co-cultured cells were analysed for changes in protein expression, growth pattern and morphology. Gene expression and proliferation assays were also performed on indirect co-cultures. Following direct co-culture with MSCs, breast cancer cells expressed elevated levels of oncogenes (NCOA4, FOS), proto-oncogenes (FYN, JUN), genes associated with invasion (MMP11), angiogenesis (VEGF) and anti-apoptosis (IGF1R, BCL2). However, universal downregulation of genes associated with proliferation was observed (Ki67, MYBL2), and reflected in reduced ATP production in response to MSC-secreted factors. Significant upregulation of EMT specific markers (N-cadherin, Vimentin, Twist and Snail) was also observed following co-culture with MSCs, with a reciprocal downregulation in E-cadherin protein expression. These changes were predominantly cell contact mediated and appeared to be MSC specific. Breast cancer cell morphology and growth pattern also altered in response to MSCs. MSCs may promote breast cancer metastasis through facilitation of EMT.

Keywords

Mesenchymal stem cells (MSCs) Breast cancer Epithelial–mesenchymal transition (EMT) Invasion Co-culture 

References

  1. 1.
    Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96CrossRefPubMedGoogle Scholar
  2. 2.
    Coleman RE, Rubens RD (1987) The clinical course of bone metastases from breast cancer. Br J Cancer 55:61–66PubMedGoogle Scholar
  3. 3.
    Espey DK, Wu XC, Swan J et al (2007) Annual report to the nation on the status of cancer, 1975–2004, featuring cancer in American Indians and Alaska Natives. Cancer 110:2119–2152CrossRefPubMedGoogle Scholar
  4. 4.
    Bhowmick NA, Moses HL (2005) Tumor-stroma interactions. Curr Opin Genet Dev 15:97–101CrossRefPubMedGoogle Scholar
  5. 5.
    Hu M, Polyak K (2008) Molecular characterisation of the tumour microenvironment in breast cancer. Eur J Cancer 44:2760–2765CrossRefPubMedGoogle Scholar
  6. 6.
    Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMedGoogle Scholar
  7. 7.
    Hombauer H, Minguell JJ (2000) Selective interactions between epithelial tumour cells and bone marrow mesenchymal stem cells. Br J Cancer 82:1290–1296CrossRefPubMedGoogle Scholar
  8. 8.
    Fierro FA, Sierralta WD, Epunan MJ et al (2004) Marrow-derived mesenchymal stem cells: role in epithelial tumor cell determination. Clin Exp Metastasis 21:313–319CrossRefPubMedGoogle Scholar
  9. 9.
    Sasser AK, Mundy BL, Smith KM et al (2007) Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell line-dependent manner when evaluated in 3D tumor environments. Cancer Lett 254:255–264CrossRefPubMedGoogle Scholar
  10. 10.
    Chen J, Zhang ZG, Li Y et al (2003) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92:692–699CrossRefPubMedGoogle Scholar
  11. 11.
    Spaeth E, Klopp A, Dembinski J et al (2008) Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 15:730–738CrossRefPubMedGoogle Scholar
  12. 12.
    Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659CrossRefPubMedGoogle Scholar
  13. 13.
    Kumar S, Chanda D, Ponnazhagan S (2008) Therapeutic potential of genetically modified mesenchymal stem cells. Gene Ther 15:711–715CrossRefPubMedGoogle Scholar
  14. 14.
    Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563CrossRefPubMedGoogle Scholar
  15. 15.
    Dwyer RM, Potter-Beirne SM, Harrington KA et al (2007) Monocyte chemotactic protein-1 (MCP-1) secreted by primary breast tumors stimulates migration of mesenchymal stem cells (MSCs). Clin Cancer Res 13:5020–5027CrossRefPubMedGoogle Scholar
  16. 16.
    Molloy AP, Martin FT, Dwyer RM et al (2009) Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int J Cancer 124:326–332CrossRefPubMedGoogle Scholar
  17. 17.
    Nakaya Y, Sheng G (2008) Epithelial to mesenchymal transition during gastrulation: an embryological view. Dev Growth Differ 50:755–766CrossRefPubMedGoogle Scholar
  18. 18.
    Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142CrossRefPubMedGoogle Scholar
  19. 19.
    Brabletz T, Jung A, Spaderna S et al (2005) Opinion: migrating cancer stem cells––an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749CrossRefPubMedGoogle Scholar
  20. 20.
    Sarrio D, Rodriguez-Pinilla SM, Hardisson D et al (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68:989–997CrossRefPubMedGoogle Scholar
  21. 21.
    Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715CrossRefPubMedGoogle Scholar
  22. 22.
    Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584CrossRefPubMedGoogle Scholar
  23. 23.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  24. 24.
    Woelfle U, Breit E, Pantel K (2005) Influence of immunomagnetic enrichment on gene expression of tumor cells. J Transl Med 3:12CrossRefPubMedGoogle Scholar
  25. 25.
    Corcoran KE, Trzaska KA, Fernandes H et al (2008) Mesenchymal stem cells in early entry of breast cancer into bone marrow. PLoS ONE 3:e2563CrossRefPubMedGoogle Scholar
  26. 26.
    Molloy AP, Martin FT, Dwyer RM et al (2008) Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int J Cancer 124:326Google Scholar
  27. 27.
    Gelmini S, Mangoni M, Serio M et al (2008) The critical role of SDF-1/CXCR4 axis in cancer and cancer stem cells metastasis. J Endocrinol Invest 31:809–819PubMedGoogle Scholar
  28. 28.
    Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868CrossRefPubMedGoogle Scholar
  29. 29.
    Pinilla SM, Honrado E, Hardisson D et al (2006) Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Breast Cancer Res Treat 99:85–90CrossRefPubMedGoogle Scholar
  30. 30.
    De Wever O, Pauwels P, De Craene B et al (2008) Molecular and pathological signatures of epithelial-mesenchymal transitions at the cancer invasion front. Histochem Cell Biol 130:481–494CrossRefPubMedGoogle Scholar
  31. 31.
    Thomas PA, Kirschmann DA, Cerhan JR et al (1999) Association between keratin and vimentin expression, malignant phenotype, and survival in postmenopausal breast cancer patients. Clin Cancer Res 5:2698–2703PubMedGoogle Scholar
  32. 32.
    McInroy L, Maatta A (2007) Down-regulation of vimentin expression inhibits carcinoma cell migration and adhesion. Biochem Biophys Res Commun 360:109–114CrossRefPubMedGoogle Scholar
  33. 33.
    Galliher AJ, Schiemann WP (2006) Beta3 integrin and Src facilitate transforming growth factor-beta mediated induction of epithelial-mesenchymal transition in mammary epithelial cells. Breast Cancer Res 8:R42CrossRefPubMedGoogle Scholar
  34. 34.
    Mercado-Pimentel ME, Runyan RB (2007) Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs 185:146–156CrossRefPubMedGoogle Scholar
  35. 35.
    Derynck R, Akhurst RJ, Balmain A (2001) TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29:117–129CrossRefPubMedGoogle Scholar
  36. 36.
    Han G, Lu SL, Li AG et al (2005) Distinct mechanisms of TGF-beta1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J Clin Invest 115:1714–1723CrossRefPubMedGoogle Scholar
  37. 37.
    Mercurio AM, Lipscomb EA, Bachelder RE (2005) Non-angiogenic functions of VEGF in breast cancer. J Mammary Gland Biol Neoplasia 10:283–290CrossRefPubMedGoogle Scholar
  38. 38.
    Wanami LS, Chen HY, Peiro S et al (2008) Vascular endothelial growth factor-A stimulates Snail expression in breast tumor cells: implications for tumor progression. Exp Cell Res 314:2448–2453CrossRefPubMedGoogle Scholar
  39. 39.
    Enciso JM, Gratzinger D, Camenisch TD et al (2003) Elevated glucose inhibits VEGF-A-mediated endocardial cushion formation: modulation by PECAM-1 and MMP-2. J Cell Biol 160:605–615CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • F. T. Martin
    • 1
  • R. M. Dwyer
    • 1
  • J. Kelly
    • 1
  • S. Khan
    • 1
  • J. M. Murphy
    • 2
  • C. Curran
    • 1
  • N. Miller
    • 1
  • E. Hennessy
    • 1
  • P. Dockery
    • 3
  • F. P. Barry
    • 2
  • T. O’Brien
    • 2
  • M. J. Kerin
    • 1
  1. 1.Department of SurgeryNational University of Ireland GalwayGalwayIreland
  2. 2.Regenerative Medicine InstituteNational University of Ireland GalwayGalwayIreland
  3. 3.Department of AnatomyNational University of Ireland GalwayGalwayIreland

Personalised recommendations