Breast Cancer Research and Treatment

, Volume 124, Issue 2, pp 327–335 | Cite as

Differential subcellular expression of protein kinase C betaII in breast cancer: correlation with breast cancer subtypes

  • Yesim Gökmen-Polar
  • Rutika Mehta
  • Sukru Tuzmen
  • Spyro Mousses
  • Mangesh A. Thorat
  • Kerry L. Sanders
  • Dmitry Turbin
  • Samuel Leung
  • David G. Huntsman
  • George W. SledgeJr.
  • Sunil Badve
Preclinical study

Abstract

Protein kinase C betaII (PKCβII) represents a novel potential target for anticancer therapies in breast cancer. In order to identify patient subgroups which might benefit from PKC-targeting therapies, we investigated the expression of PKCβII in human breast cancer cell lines and in a tissue microarray (TMA). We first screened breast cancer cell line representatives of breast cancer subtypes for PKCβII expression at the mRNA and at the protein levels. We analyzed a TMA comprising of tumors from 438 patients with a median followup of 15.4 years for PKCβII expression by immunohistochemistry along with other prognostic factors in breast cancer. Among a panel of human breast cancer cell lines, only MDA-MB-436, a triple negative basal cell line, showed overexpression for PKCβII both at the mRNA and at the protein levels. In breast cancer patients, cytoplasmic expression of PKCβII correlated positively with human epidermal growth factor receptor-2 (HER-2; P = 0.01) and Ki-67 (P = 0.016), while nuclear PKCβII correlated positively with estrogen receptor (ER; P = 0.016). The positive correlation of CK5/6 with cytoplasmic PKCβII (P = 0.033) lost statistical significance after adjusting for multiple comparisons (P = 0.198). Cytoplasmic PKCβII did not correlate with cyclooxygenase (COX-2; P = 0.925) and vascular endothelial growth factor (P = 1). There was no significant association between PKCβII staining and overall survival. Cytoplasmic PKCβII correlates with HER-2 and Ki-67, while nuclear PKCβII correlates with ER in breast cancer. Our study suggests the necessity for assessing the subcellular localization of PKCβII in breast cancer subtypes when evaluating the possible effectiveness of PKCβII-targeting agents.

Keywords

Protein kinase C betaII Breast cancer Human epidermal growth factor receptor-2 Tissue microarray Subcellular localization 

Supplementary material

10549_2010_733_MOESM1_ESM.pdf (137 kb)
Supplementary material 1 (PDF 138 kb)

References

  1. 1.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752CrossRefPubMedGoogle Scholar
  2. 2.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874CrossRefPubMedGoogle Scholar
  3. 3.
    Podar K, Raab MS, Chauhan D, Anderson KC (2007) The therapeutic role of targeting protein kinase c in solid and hematologic malignancies. Expert Opin Investig Drugs 16:1693–1707CrossRefPubMedGoogle Scholar
  4. 4.
    Fields AP, Murray NR (2008) Protein kinase c isozymes as therapeutic targets for treatment of human cancers. Adv Enzyme Regul 48:166–178CrossRefPubMedGoogle Scholar
  5. 5.
    O’Brian CA (1989) Elevated protein kinase c expression in human breast tumor biopsies relative to normal breast tissue. Cancer Res 49:3215–3217PubMedGoogle Scholar
  6. 6.
    Gordge PC, Hulme MJ, Clegg RA, Miller WR (1996) Elevation of protein kinase a and protein kinase c activities in malignant as compared with normal human breast tissue. Eur J Cancer 32A:2120–2126CrossRefPubMedGoogle Scholar
  7. 7.
    Borner C, Wyss R, Regazzi R, Eppenberger U, Fabbro D (1987) Immunological quantitation of phospholipid/ca2+-dependent protein kinase of human mammary carcinoma cells: inverse relationship to estrogen receptors. Int J Cancer 40:344–348CrossRefPubMedGoogle Scholar
  8. 8.
    Lee SA, Karaszkiewicz JW, Anderson WB (1992) Elevated level of nuclear protein kinase c in multidrug-resistant mcf-7 human breast carcinoma cells. Cancer Res 52:3750–3759PubMedGoogle Scholar
  9. 9.
    Tonetti DA, Morrow M, Kidwai N, Gupta A, Badve S (2003) Elevated protein kinase c alpha expression may be predictive of tamoxifen treatment failure. Br J Cancer 88:1400–1402CrossRefPubMedGoogle Scholar
  10. 10.
    Assender JW, Gee JM, Lewis I, Ellis IO, Robertson JF, Nicholson RI (2007) Protein kinase c isoform expression as a predictor of disease outcome on endocrine therapy in breast cancer. J Clin Pathol 60:1216–1221CrossRefPubMedGoogle Scholar
  11. 11.
    Kerfoot C, Huang W, Rotenberg SA (2004) Immunohistochemical analysis of advanced human breast carcinomas reveals downregulation of protein kinase c alpha. J Histochem Cytochem 52:419–422PubMedGoogle Scholar
  12. 12.
    McKiernan E, O’Brien K, Grebenchtchikov N, Geurts-Moespot A, Sieuwerts AM, Martens JW, Magdolen V, Evoy D, McDermott E, Crown J, Sweep FC, Duffy MJ (2008) Protein kinase cdelta expression in breast cancer as measured by real-time pcr, western blotting and elisa. Br J Cancer 99:1644–1650CrossRefPubMedGoogle Scholar
  13. 13.
    Pan Q, Bao LW, Kleer CG, Sabel MS, Griffith KA, Teknos TN, Merajver SD (2005) Protein kinase c epsilon is a predictive biomarker of aggressive breast cancer and a validated target for rna interference anticancer therapy. Cancer Res 65:8366–8371CrossRefPubMedGoogle Scholar
  14. 14.
    Ali S, Al-Sukhun S, El-Rayes BF, Sarkar FH, Heilbrun LK, Philip PA (2009) Protein kinases c isozymes are differentially expressed in human breast carcinomas. Life Sci 84:766–771CrossRefPubMedGoogle Scholar
  15. 15.
    Ways DK, Kukoly CA, de Vente J, Hooker JL, Bryant WO, Posekany KJ, Fletcher DJ, Cook PP, Parker PJ (1995) Mcf-7 breast cancer cells transfected with protein kinase c-alpha exhibit altered expression of other protein kinase c isoforms and display a more aggressive neoplastic phenotype. J Clin Invest 95:1906–1915CrossRefPubMedGoogle Scholar
  16. 16.
    Morse-Gaudio M, Connolly JM, Rose DP (1998) Protein kinase c and its isoforms in human breast cancer cells: relationship to the invasive phenotype. Int J Oncol 12:1349–1354PubMedGoogle Scholar
  17. 17.
    Manni A, Buckwalter E, Etindi R, Kunselman S, Rossini A, Mauger D, Dabbs D, Demers L (1996) Induction of a less aggressive breast cancer phenotype by protein kinase c-alpha and -beta overexpression. Cell Growth Differ 7:1187–1198PubMedGoogle Scholar
  18. 18.
    Li H, Weinstein IB (2006) Protein kinase c beta enhances growth and expression of cyclin d1 in human breast cancer cells. Cancer Res 66:11399–11408CrossRefPubMedGoogle Scholar
  19. 19.
    Yoshiji H, Kuriyama S, Ways DK, Yoshii J, Miyamoto Y, Kawata M, Ikenaka Y, Tsujinoue H, Nakatani T, Shibuya M, Fukui H (1999) Protein kinase c lies on the signaling pathway for vascular endothelial growth factor-mediated tumor development and angiogenesis. Cancer Res 59:4413–4418PubMedGoogle Scholar
  20. 20.
    Xia P, Aiello LP, Ishii H, Jiang ZY, Park DJ, Robinson GS, Takagi H, Newsome WP, Jirousek MR, King GL (1996) Characterization of vascular endothelial growth factor’s effect on the activation of protein kinase c, its isoforms, and endothelial cell growth. J Clin Invest 98:2018–2026CrossRefPubMedGoogle Scholar
  21. 21.
    Schneider BP, Sledge GW Jr (2007) Drug insight: Vegf as a therapeutic target for breast cancer. Nat Clin Pract Oncol 4:181–189CrossRefPubMedGoogle Scholar
  22. 22.
    McLeskey SW, Tobias CA, Vezza PR, Filie AC, Kern FG, Hanfelt J (1998) Tumor growth of fgf or vegf transfected mcf-7 breast carcinoma cells correlates with density of specific microvessels independent of the transfected angiogenic factor. Am J Pathol 153:1993–2006PubMedGoogle Scholar
  23. 23.
    Troester MA, Hoadley KA, Sorlie T, Herbert BS, Borresen-Dale AL, Lonning PE, Shay JW, Kaufmann WK, Perou CM (2004) Cell-type-specific responses to chemotherapeutics in breast cancer. Cancer Res 64:4218–4226CrossRefPubMedGoogle Scholar
  24. 24.
    Pegram MD, Finn RS, Arzoo K, Beryt M, Pietras RJ, Slamon DJ (1997) The effect of her-2/neu overexpression on chemotherapeutic drug sensitivity in human breast and ovarian cancer cells. Oncogene 15:537–547CrossRefPubMedGoogle Scholar
  25. 25.
    Tuzmen S, Kiefer J, Mousses S (2007) Validation of short interfering rna knockdowns by quantitative real-time pcr. Methods Mol Biol 353:177–203PubMedGoogle Scholar
  26. 26.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2(-delta delta c(t)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  27. 27.
    Sutherland BW, Kucab J, Wu J, Lee C, Cheang MC, Yorida E, Turbin D, Dedhar S, Nelson C, Pollak M, Leighton Grimes H, Miller K, Badve S, Huntsman D, Blake-Gilks C, Chen M, Pallen CJ, Dunn SE (2005) Akt phosphorylates the y-box binding protein 1 at ser102 located in the cold shock domain and affects the anchorage-independent growth of breast cancer cells. Oncogene 24:4281–4292CrossRefPubMedGoogle Scholar
  28. 28.
    Thorat MA, Turbin D, Morimiya A, Leung S, Zhang Q, Jeng MH, Huntsman DG, Nakshatri H, Badve S (2008) Amplified in breast cancer 1 expression in breast cancer. Histopathology 53:634–641CrossRefPubMedGoogle Scholar
  29. 29.
    Badve S, Turbin D, Thorat MA, Morimiya A, Nielsen TO, Perou CM, Dunn S, Huntsman DG, Nakshatri H (2007) Foxa1 expression in breast cancer––correlation with luminal subtype a and survival. Clin Cancer Res 13:4415–4421CrossRefPubMedGoogle Scholar
  30. 30.
    Makretsov NA, Huntsman DG, Nielsen TO, Yorida E, Peacock M, Cheang MC, Dunn SE, Hayes M, van de Rijn M, Bajdik C, Gilks CB (2004) Hierarchical clustering analysis of tissue microarray immunostaining data identifies prognostically significant groups of breast carcinoma. Clin Cancer Res 10:6143–6151CrossRefPubMedGoogle Scholar
  31. 31.
    Ragaz J, Miller K, Badve S, Dayachko Y, Dunn S, Nielsen T, Brodie A, Huntsman D, Bajdik C, Sledge GW (2004) Adverse association of expressed vascular endothelial growth factor and long-term outcome of stage i-iii breast cancer, with coexpression data of vegf, her-2, cox-2, upa, and er. Results from the british columbia tissue microarray project. Proc ASCO 23Google Scholar
  32. 32.
    Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10:7252–7259CrossRefPubMedGoogle Scholar
  33. 33.
    Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527CrossRefPubMedGoogle Scholar
  34. 34.
    Chelouche-Lev D, Miller CP, Tellez C, Ruiz M, Bar-Eli M, Price JE (2004) Different signalling pathways regulate vegf and il-8 expression in breast cancer: implications for therapy. Eur J Cancer 40:2509–2518CrossRefPubMedGoogle Scholar
  35. 35.
    Naumov GN, Bender E, Zurakowski D, Kang SY, Sampson D, Flynn E, Watnick RS, Straume O, Akslen LA, Folkman J, Almog N (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98:316–325CrossRefPubMedGoogle Scholar
  36. 36.
    Newton AC (2001) Protein kinase c: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem Rev 101:2353–2364CrossRefPubMedGoogle Scholar
  37. 37.
    Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF, Stijleman IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167CrossRefPubMedGoogle Scholar
  38. 38.
    Ono Y, Kikkawa U, Ogita K, Fujii T, Kurokawa T, Asaoka Y, Sekiguchi K, Ase K, Igarashi K, Nishizuka Y (1987) Expression and properties of two types of protein kinase c: alternative splicing from a single gene. Science 236:1116–1120CrossRefPubMedGoogle Scholar
  39. 39.
    Chalfant CE, Mischak H, Watson JE, Winkler BC, Goodnight J, Farese RV, Cooper DR (1995) Regulation of alternative splicing of protein kinase c beta by insulin. J Biol Chem 270:13326–13332CrossRefPubMedGoogle Scholar
  40. 40.
    Martelli AM, Sang N, Borgatti P, Capitani S, Neri LM (1999) Multiple biological responses activated by nuclear protein kinase c. J Cell Biochem 74:499–521CrossRefPubMedGoogle Scholar
  41. 41.
    Martelli AM, Evangelisti C, Nyakern M, Manzoli FA (2006) Nuclear protein kinase c. Biochim Biophys Acta 1761:542–551PubMedGoogle Scholar
  42. 42.
    Fridberg M, Servin A, Anagnostaki L, Linderoth J, Berglund M, Soderberg O, Enblad G, Rosen A, Mustelin T, Jerkeman M, Persson JL, Wingren AG (2007) Protein expression and cellular localization in two prognostic subgroups of diffuse large b-cell lymphoma: higher expression of zap70 and pkc-beta ii in the non-germinal center group and poor survival in patients deficient in nuclear pten. Leuk Lymphoma 48:2221–2232CrossRefPubMedGoogle Scholar
  43. 43.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the her-2/neu oncogene. Science 235:177–182CrossRefPubMedGoogle Scholar
  44. 44.
    Jones RL, Salter J, A’Hern R, Nerurkar A, Parton M, Reis-Filho JS, Smith IE, Dowsett M (2008) The prognostic significance of ki67 before and after neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat 116:53–68Google Scholar
  45. 45.
    Konecny GE, Meng YG, Untch M, Wang HJ, Bauerfeind I, Epstein M, Stieber P, Vernes JM, Gutierrez J, Hong K, Beryt M, Hepp H, Slamon DJ, Pegram MD (2004) Association between her-2/neu and vascular endothelial growth factor expression predicts clinical outcome in primary breast cancer patients. Clin Cancer Res 10:1706–1716CrossRefPubMedGoogle Scholar
  46. 46.
    Zachary I (2003) Vegf signalling: integration and multi-tasking in endothelial cell biology. Biochem Soc Trans 31:1171–1177CrossRefPubMedGoogle Scholar
  47. 47.
    Suh YJ, Chada S, McKenzie T, Liu Y, Swisher SG, Lucci A, Hunt KK (2005) Synergistic tumoricidal effect between celecoxib and adenoviral-mediated delivery of mda-7 in human breast cancer cells. Surgery 138:422–430CrossRefPubMedGoogle Scholar
  48. 48.
    Ristimaki A, Sivula A, Lundin J, Lundin M, Salminen T, Haglund C, Joensuu H, Isola J (2002) Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res 62:632–635PubMedGoogle Scholar
  49. 49.
    Graff JR, McNulty AM, Hanna KR, Konicek BW, Lynch RL, Bailey SN, Banks C, Capen A, Goode R, Lewis JE, Sams L, Huss KL, Campbell RM, Iversen PW, Neubauer BL, Brown TJ, Musib L, Geeganage S, Thornton D (2005) The protein kinase cbeta-selective inhibitor, enzastaurin (ly317615.Hcl), suppresses signaling through the akt pathway, induces apoptosis, and suppresses growth of human colon cancer and glioblastoma xenografts. Cancer Res 65:7462–7469CrossRefPubMedGoogle Scholar
  50. 50.
    Mina L, Krop I, Zon RT, Isakoff SJ, Schneider CJ, Yu M, Johnson C, Vaughn LG, Wang Y, Hristova-Kazmierski M, Shonukan OO, Sledge GW, Miller KD (2009) A phase ii study of oral enzastaurin in patients with metastatic breast cancer previously treated with an anthracycline and a taxane containing regimen. Invest New Drugs 27:565–570Google Scholar
  51. 51.
    Fields AP, Calcagno SR, Krishna M, Rak S, Leitges M, Murray NR (2009) Protein kinase cbeta is an effective target for chemoprevention of colon cancer. Cancer Res 69:1643–1650CrossRefPubMedGoogle Scholar
  52. 52.
    Robertson MJ, Kahl BS, Vose JM, de Vos S, Laughlin M, Flynn PJ, Rowland K, Cruz JC, Goldberg SL, Musib L, Darstein C, Enas N, Kutok JL, Aster JC, Neuberg D, Savage KJ, LaCasce A, Thornton D, Slapak CA, Shipp MA (2007) Phase ii study of enzastaurin, a protein kinase c beta inhibitor, in patients with relapsed or refractory diffuse large b-cell lymphoma. J Clin Oncol 25:1741–1746CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Yesim Gökmen-Polar
    • 1
  • Rutika Mehta
    • 2
  • Sukru Tuzmen
    • 3
  • Spyro Mousses
    • 3
  • Mangesh A. Thorat
    • 2
  • Kerry L. Sanders
    • 1
  • Dmitry Turbin
    • 4
  • Samuel Leung
    • 4
  • David G. Huntsman
    • 4
  • George W. SledgeJr.
    • 1
    • 2
  • Sunil Badve
    • 1
    • 2
  1. 1.Department of MedicineIndiana University School of MedicineIndianapolisUSA
  2. 2.Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisUSA
  3. 3.Molecular Genetics Laboratory, Pharmaceutical Genomics DivisionTranslational Genomics Research InstituteScottsdaleUSA
  4. 4.Genetic Pathology Evaluation CentreUniversity of British ColumbiaVancouverCanada

Personalised recommendations