Breast Cancer Research and Treatment

, Volume 123, Issue 2, pp 405–415 | Cite as

Breast cancer cell CD200 expression regulates immune response to EMT6 tumor cells in mice

  • Reginald M. Gorczynski
  • Zhiqi Chen
  • Jun Diao
  • Ismat Khatri
  • Karrie Wong
  • Kai Yu
  • Julia Behnke
Preclinical study

Abstract

CD200 has been characterized as an important immunoregulatory molecule, increased expression of which can lead to decreased transplant rejection, autoimmunity, and allergic disease. Elevated CD200 expression has been reported to be associated with poor prognosis in a number of human malignancies. We have found that cells of the transplantable EMT6 mouse breast cancer line growing in vitro express low levels of CD200, but levels increase markedly during growth in immunocompetent mice. Similar increased in vivo expression does not occur in NOD-SCID.IL-2γr−/− mice or mice with generalized over-expression of a CD200 transgene. In both mice, tumor growth occurs faster. Altered CD200 expression in control versus transgenic mice is accompanied by reproducible changes in tumor-infiltrating host cells, and altered cell composition in lymph nodes draining the tumor (DLN). Neutralization of expressed CD200 by anti-CD200mAbs leads to decreased tumor growth in immunocompetent mice, with improved detection of cytotoxic anti-tumor immune cells in DLN. Finally, we report that tumor growth in vivo can be monitored by levels of soluble CD200 (sCD200) in serum of tumor-bearing animals.

Keywords

Breast cancer Treg CD200 transgene Immunotherapy 

Notes

Acknowledgments

This study was supported by a POP II grant from the Canadian Institutes of Health Research (CIHR) to RMG.

References

  1. 1.
    Kato M, Slack FJ (2008) Micro RNAS: small molecules with big roles—C. elegans to human cancer. Biol Cell 100:71–81CrossRefPubMedGoogle Scholar
  2. 2.
    Dierks C, Grbic J, Zirlik K, Beigi R, Englund NP, Guo GR, Veelken H, Engelhardt M, Mertelsmann R, Kelleher JF, Schultz P, Warmuth M (2007) Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med 13:944–951CrossRefPubMedGoogle Scholar
  3. 3.
    Salih HR, Kosowski SG, Haluska VF, Starling GC, Loo DT, Lee F, Aruffo AA, Trail PA, Kiener PA (2000) Constitutive expression of functional 4-1BB (CD137) ligand on carcinoma cells. J Immunol 165:2903–2910PubMedGoogle Scholar
  4. 4.
    Ilvesaro JM, Merrell MA, Li L, Wakchoure S, Graves D, Brooks S, Rahko E, JukkolaVuorinen A, Vuopala KS, Harris KW, Selander KS (2008) Toll-like receptor 9 mediates CpG oligonucleotide-induced cellular invasion. Mol Cancer Res 6:1534–1543CrossRefPubMedGoogle Scholar
  5. 5.
    Moreaux J, Hose D, Reme T, Jourdan E, Hundemer M, Legouffe E, Moine P, Bourin P, Moos M, Corre J, Möhler T, De Vos J, Rossi JF, Goldschmidt H, Klein B (2006) CD200 is a new prognostic factor in multiple myeloma. Blood 108:4194–4197CrossRefPubMedGoogle Scholar
  6. 6.
    Petermann KB, Rozenberg GI, Zedek D, Groben P, McKinnon K, Buehler C, Kim WY, Shields JM, Penland S, Bear JE, Thomas NE, Serody JS, Sharpless NE (2007) CD200 is induced by ERK and is a potential therapeutic target in melanoma. J Clin Invest 117:3922–3929PubMedGoogle Scholar
  7. 7.
    Moreaux J, Veyrune JL, Reme T, De Vos J, Klein B (2008) CD200: a putative therapeutic target in cancer. Biochem Biophys Res Commun 366:117–122CrossRefPubMedGoogle Scholar
  8. 8.
    Siva A, Xin H, Qin F, Oltean D, Bowdish KS, Kretz-Rommel A (2008) Immune modulation by melanoma and ovarian tumor cells through expression of the immunosuppressive molecule CD200. Cancer Immunol Immunother 57:987–996CrossRefPubMedGoogle Scholar
  9. 9.
    McWhirter JR, Kretz-Rommel A, Saven A, Maruyama T, Potter KN, Mockridge CI, Ravey EP, Qin FH, Bowdish KS (2006) Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proc Nat Acad Sci USA 103:1041–1046CrossRefPubMedGoogle Scholar
  10. 10.
    Tonks A (2007) CD200 as a prognostic factor in acute myeloid leukemia. Leukemia 21:566–568CrossRefPubMedGoogle Scholar
  11. 11.
    Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH, Barclay AN, Sedgwick JD (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290:1768–1771CrossRefPubMedGoogle Scholar
  12. 12.
    Kretz-Rommel A, Qin FH, Dakappagari N, Ravey EP, McWhirter J, Oltean D, Frederickson S, Maruyama T, Wild MA, Nolan MJ, Wu DY, Springhorn J, Bowdish KS (2007) CD200 expression on tumor cells suppresses antitumor immunity: new approaches to cancer immunotherapy. J Immunol 178:5595–5605PubMedGoogle Scholar
  13. 13.
    Kawasaki BT, Mistree T, Hurt EM, Kalathur M, Farrar WL (2007) Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells. Biochem Biophys Res Commun 364:778–782CrossRefPubMedGoogle Scholar
  14. 14.
    Rosenberg SA (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915CrossRefPubMedGoogle Scholar
  15. 15.
    Gorczynski RM, Chen Z, He W, Khatri I, Sun Y, Yu K, Boudakov I (2009) Expression of a CD200 transgene is necessary for induction but not maintenance of tolerance to cardiac and skin allografts. J Immunol 183:1560–1568CrossRefPubMedGoogle Scholar
  16. 16.
    Gorczynski RM, Cattral MS, Chen ZG, Hu JA, Lei J, Min WP, Yu G, Ni J (1999) An immunoadhesin incorporating the molecule OX-2 is a potent immunosuppressant that prolongs allo- and xenograft survival. J Immunol 163:1654–1660PubMedGoogle Scholar
  17. 17.
    Jakobsen CG, Rasmussen N, Laenkholm A-V, Ditzel HJ (2007) Phage display-derived human monoclonal antibodies isolated by binding to the surface of live primary breast cancer cells recognize GRP78. Cancer Res 67:9507–9517CrossRefPubMedGoogle Scholar
  18. 18.
    Andrews PD (2003) Aurora kinases: shining lights on the therapeutic horizon? Oncogene 24:5005–5015CrossRefGoogle Scholar
  19. 19.
    Wong K, Spaner DE, Gorczynski RM (2008) Lymphoma cell surface expression of CD200 modulates anti-tumor immunity (abstract). AAI, San DiegoGoogle Scholar
  20. 20.
    Wu L, Tannock IF (2003) Repopulation in murine breast tumors during and after sequential treatments with cyclophosphamide and 5-fluorouracil. Cancer Res 63:2134–2138PubMedGoogle Scholar
  21. 21.
    Diao J, Smythe JA, Smyth C, Rowe PB, Alexander IE (1999) Human PBMC-derived dendritic cells transduced with an adenovirus vector induce cytotoxic T-lymphocyte responses against a vector-encoded antigen in vitro. Gene Ther 6:845–853CrossRefPubMedGoogle Scholar
  22. 22.
    Blobel CP (2005) ADAMS: key players in EGFR-signaling, development and disease. Nat Rev Mol Cell Biol 6:32–43CrossRefPubMedGoogle Scholar
  23. 23.
    Gorczynski RM, Chen Z, Hu J, Kai Y, Lei J (2001) Evidence of a role for CD200 in regulation of immune rejection of leukaemic tumour cells in C57BL/6 mice. Clin Exp Immunol 126:220–229CrossRefPubMedGoogle Scholar
  24. 24.
    Kretz-Rommel A, Qin F, Dakappagari N, Cofiell R, Faas SJ, Bowdish KS (2008) Blockade of CD200 in the presence or absence of antibody effector function: implications for anti-CD200 therapy. J Immunol 180:699–705PubMedGoogle Scholar
  25. 25.
    Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T, Aokage K, Saijo N, Nishiwaki Y, Gemma A, Kudo S, Ochiai A (2008) Predominant infiltration of macrophages and CD8(+) T cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer 113:1387–1395CrossRefPubMedGoogle Scholar
  26. 26.
    Gorczynski RM (2005) CD200 and its receptors as targets for immunoregulation. Curr Opin Invest Drugs 6:483–488Google Scholar
  27. 27.
    Sica A, Allavena P, Mantovani A (2008) Cancer related inflammation: the macrophage connection. Cancer Lett 267:204–215CrossRefPubMedGoogle Scholar
  28. 28.
    Baumgartner J, Wilson C, Palmer B, Richter D, Banerjee A, McCarter M (2007) Melanoma induces immunosuppression by up-regulating FOXP3(+) regulatory T cells. J Surg Res 141:72–77CrossRefPubMedGoogle Scholar
  29. 29.
    Hilchey SP, De A, Rimsza LM, Bankert RB, Bernstein SH (2007) Follicular lymphoma intratumoral CD4(+)CD25(+)GITR(+) regulatory T cells potently suppress CD3/CD28-costimulated autologous and allogeneic CD8(+)CD25(-) and CD4(+)CD25(-) T cells. J Immunol 178:4051–4061PubMedGoogle Scholar
  30. 30.
    Sakaguchi S (2004) Naturally arising CD4(+) regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562CrossRefPubMedGoogle Scholar
  31. 31.
    Groux H (2003) Type 1 T-regulatory cells: their role in the control of immune responses. Transplantation 75:8S–12SCrossRefPubMedGoogle Scholar
  32. 32.
    Jiang H, Chess L (2004) An integrated view of suppressor T cell subsets in immunoregulation. J Clin Invest 114:1198–1208PubMedGoogle Scholar
  33. 33.
    Kapp JA, Kapp LM, McKenna KC (2004) Gamma delta T cells play an essential role in several forms of tolerance. Immunol Res 29:93–102CrossRefPubMedGoogle Scholar
  34. 34.
    Young KJ, Zhang L (2002) The nature and mechanisms of DN regulatory T-cell mediated suppression. Hum Immunol 63:926–934CrossRefPubMedGoogle Scholar
  35. 35.
    Gorczynski RM, Chen Z, Kai Y, Wong S, Lee L (2004) Induction of tolerance-inducing antigen-presenting cells in bone marrow cultures in vitro using monoclonal antibodies to CD200R. Transplantation 77:1138–1144CrossRefPubMedGoogle Scholar
  36. 36.
    Gorczynski RM, Lee L, Boudakov I (2005) Augmented induction of CD4(+)CD25(+) Treg using monoclonal antibodies to CD200R. Transplantation 79:488–491CrossRefPubMedGoogle Scholar
  37. 37.
    Nagaraj S, Gabrilovich DI (2008) Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res 68:2561–2563CrossRefPubMedGoogle Scholar
  38. 38.
    Cipriani B, Fridman A, Bendtsen C, Dharmapuri S, Mennuni C, Pak I, Mesiti G, Forni G, Monaci P, Bagchi A, Ciliberto G, LaMonica N, Scarselli E (2008) Therapeutic vaccination halts disease progression in BALB-neuT mice: the amplitude of elicited immune response is predictive of vaccine efficacy. Hum Gene Ther 19:670–680CrossRefPubMedGoogle Scholar
  39. 39.
    Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59CrossRefPubMedGoogle Scholar
  40. 40.
    Zhou JB, Zhang H, Gu PH, Bai JN, Margolick JB, Zhang Y (2008) NF-kappa B pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat 111:419–427CrossRefPubMedGoogle Scholar
  41. 41.
    Liu ET (2008) Functional genomics of cancer. Curr Opin Genet Develop 18:251–256CrossRefGoogle Scholar
  42. 42.
    Kuvaja P, Talvensaari-Mattila A, Turpeenniemi-Hujanen T (2008) High preoperative plasma TIMP-1 is prognostic for early relapse in primary breast carcinoma. Int J Cancer 123:846–851CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Reginald M. Gorczynski
    • 1
  • Zhiqi Chen
    • 1
  • Jun Diao
    • 1
  • Ismat Khatri
    • 1
  • Karrie Wong
    • 1
  • Kai Yu
    • 1
  • Julia Behnke
    • 1
  1. 1.University Health Network, Toronto General HospitalTorontoCanada

Personalised recommendations