Advertisement

Breast Cancer Research and Treatment

, Volume 123, Issue 1, pp 113–124 | Cite as

Cyclin D1 is a direct target of JAG1-mediated Notch signaling in breast cancer

  • Brenda Cohen
  • Mamiko Shimizu
  • Julia Izrailit
  • Nancy F. L. Ng
  • Yuri Buchman
  • James G. Pan
  • Judy Dering
  • Michael ReedijkEmail author
Preclinical Study

Abstract

The Notch ligand, JAG1 is associated with breast cancer recurrence. Herein, we report on a genomics approach to elucidate mechanisms downstream of JAG1 that promote breast cancer growth. In a survey of 46 breast cancer cell lines, we found that triple negative (TN; basal and mesenchymal ER-, PR-, and Her2-negative) lines express JAG1 at significantly higher levels than do HER2+ or luminal (ER+) Her2 cell lines. In contrast to the luminal lines tested (T47D and MCF7), TN breast cancer cell lines (HCC1143 and MDA MB231) display high-level JAG1 expression and growth inhibition with RNA interference-induced JAG1 down-regulation. We used microarray profiling of TN tumor cells transfected with JAG1 siRNA to identify JAG1-regulated genes (P ≤ 0.005; fold change ≥1.5). Among JAG1-regulated genes identified, cyclin D1 was found to be a direct target of NOTCH1 and NOTCH3. We show that JAG1 down-regulation reduces direct binding of Notch to the cyclin D1 promoter, reduced cyclin D1 expression and inhibition of cell cycle progression through the cyclin D1-dependant G1/S checkpoint. Furthermore, we show that cyclin D1 and JAG1 expression correlate in TN breast cancer expression datasets. These data suggest a model whereby JAG1 promotes cyclin D1-mediated proliferation of TN breast cancers.

Keywords

Notch JAG1 Cyclin D1 Triple negative Breast cancer 

Notes

Acknowledgments

The authors would like to thank members of the Reedijk Lab for valuable advice and support. This study was supported by funds to M.R. from the Canadian Breast Cancer Foundation. Analyses were performed using BRB-ArrayTools developed by Dr. Richard Simon and BRB-ArrayTools Development Team.

Supplementary material

10549_2009_621_MOESM1_ESM.pdf (89 kb)
(PDF 90 kb)

References

  1. 1.
    American Cancer Society (2007) Cancer facts and figures 2007. American Cancer Society, AtlantaGoogle Scholar
  2. 2.
    Du XL, Fox EE, Lai D (2008) Competing causes of death for women with breast cancer and change over time from 1975 to 2003. Am J Clin Oncol 31(2):105–116CrossRefPubMedGoogle Scholar
  3. 3.
    Miele L, Golde T, Osborne B (2006) Notch signaling in cancer. Curr Mol Med 6(8):905–918CrossRefPubMedGoogle Scholar
  4. 4.
    Iwatsubo T (2004) The gamma-secretase complex: machinery for intramembrane proteolysis. Curr Opin Neurobiol 14(3):379–383CrossRefPubMedGoogle Scholar
  5. 5.
    Kovall RA (2007) Structures of CSL, Notch and Mastermind proteins: piecing together an active transcription complex. Curr Opin Struct Biol 17(1):117–127CrossRefPubMedGoogle Scholar
  6. 6.
    Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194(3):237–255CrossRefPubMedGoogle Scholar
  7. 7.
    Gallahan D, Callahan R (1987) Mammary tumorigenesis in feral mice: identification of a new int locus in mouse mammary tumor virus (Czech II)-induced mammary tumors. J Virol 61(1):66–74PubMedGoogle Scholar
  8. 8.
    Imatani A, Callahan R (2000) Identification of a novel NOTCH-4/INT-3 RNA species encoding an activated gene product in certain human tumor cell lines. Oncogene 19(2):223–231CrossRefPubMedGoogle Scholar
  9. 9.
    Stylianou S, Clarke RB, Brennan K (2006) Aberrant activation of notch signaling in human breast cancer. Cancer Res 66(3):1517–1525CrossRefPubMedGoogle Scholar
  10. 10.
    Yamaguchi N et al (2008) NOTCH3 signaling pathway plays crucial roles in the proliferation of ErbB2-negative human breast cancer cells. Cancer Res 68(6):1881–1888CrossRefPubMedGoogle Scholar
  11. 11.
    Weijzen S et al (2002) Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 8(9):979–986CrossRefPubMedGoogle Scholar
  12. 12.
    Pece S et al (2004) Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol 167(2):215–221CrossRefPubMedGoogle Scholar
  13. 13.
    Reedijk M et al (2005) High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65(18):8530–8537CrossRefPubMedGoogle Scholar
  14. 14.
    Reedijk M et al (2008) JAG1 expression is associated with a basal phenotype and recurrence in lymph node-negative breast cancer. Breast Cancer Res Treat 111(3):439–448CrossRefPubMedGoogle Scholar
  15. 15.
    Farnie G et al (2007) Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst 99(8):616–627CrossRefPubMedGoogle Scholar
  16. 16.
    Rizzo P et al (2008) Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res 68(13):5226–5235CrossRefPubMedGoogle Scholar
  17. 17.
    Lee CW et al (2008) Molecular dependence of estrogen receptor-negative breast cancer on a notch-survivin signaling axis. Cancer Res 68(13):5273–5281CrossRefPubMedGoogle Scholar
  18. 18.
    Leong KG et al (2007) Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med 204(12):2935–2948CrossRefPubMedGoogle Scholar
  19. 19.
    Rustighi A et al (2009) The prolyl-isomerase Pin1 is a Notch1 target that enhances Notch1 activation in cancer. Nat Cell Biol 11(2):133–142CrossRefPubMedGoogle Scholar
  20. 20.
    Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512CrossRefPubMedGoogle Scholar
  21. 21.
    Arnold A, Papanikolaou A (2005) Cyclin D1 in breast cancer pathogenesis. J Clin Oncol 23(18):4215–4224CrossRefPubMedGoogle Scholar
  22. 22.
    Kiaris H et al (2004) Modulation of notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium. Am J Pathol 165(2):695–705PubMedGoogle Scholar
  23. 23.
    Yu Q, Geng Y, Sicinski P (2001) Specific protection against breast cancers by cyclin D1 ablation. Nature 411(6841):1017–1021CrossRefPubMedGoogle Scholar
  24. 24.
    Ronchini C, Capobianco AJ (2001) Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 21(17):5925–5934CrossRefPubMedGoogle Scholar
  25. 25.
    Stahl M et al (2006) Notch1-induced transformation of RKE-1 cells requires up-regulation of cyclin D1. Cancer Res 66(15):7562–7570CrossRefPubMedGoogle Scholar
  26. 26.
    Rowan S et al (2008) Notch signaling regulates growth and differentiation in the mammalian lens. Dev Biol 321(1):111–122CrossRefPubMedGoogle Scholar
  27. 27.
    Campa VM et al (2008) Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J Cell Biol 183(1):129–141CrossRefPubMedGoogle Scholar
  28. 28.
    Chin K et al (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541CrossRefPubMedGoogle Scholar
  29. 29.
    Hoadley KA et al (2007) EGFR associated expression profiles vary with breast tumor subtype. BMC Genomics 8:258CrossRefPubMedGoogle Scholar
  30. 30.
    Hu Z et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96CrossRefPubMedGoogle Scholar
  31. 31.
    Miller LD et al (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102(38):13550–13555CrossRefPubMedGoogle Scholar
  32. 32.
    Neve RM et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527CrossRefPubMedGoogle Scholar
  33. 33.
    Richardson AL et al (2006) X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9(2):121–132CrossRefPubMedGoogle Scholar
  34. 34.
    Barrett T et al (2007) NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Res 35(Database issue):D760–D765CrossRefPubMedGoogle Scholar
  35. 35.
    Choi JH et al (2008) Jagged-1 and Notch3 juxtacrine loop regulates ovarian tumor growth and adhesion. Cancer Res 68(14):5716–5723CrossRefPubMedGoogle Scholar
  36. 36.
    Jundt F et al (2004) Jagged1-induced Notch signaling drives proliferation of multiple myeloma cells. Blood 103(9):3511–3515CrossRefPubMedGoogle Scholar
  37. 37.
    Purow BW et al (2005) Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 65(6):2353–2363CrossRefPubMedGoogle Scholar
  38. 38.
    Santagata S et al (2004) JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res 64(19):6854–6857CrossRefPubMedGoogle Scholar
  39. 39.
    Dent R et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13(15 Pt 1):4429–4434CrossRefPubMedGoogle Scholar
  40. 40.
    Lee CW et al (2008) A functional Notch-survivin gene signature in basal breast cancer. Breast Cancer Res 10(6):R97CrossRefPubMedGoogle Scholar
  41. 41.
    Bane AL et al (2008) Expression profiling of familial breast cancers demonstrates higher expression of FGFR2 in BRCA2-associated tumors. Breast Cancer Res Treat 117(1):183–191Google Scholar
  42. 42.
    Osipo C et al (2008) ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a gamma-secretase inhibitor. Oncogene 27(37):5019–5032CrossRefPubMedGoogle Scholar
  43. 43.
    Sherr CJ (1996) Cancer cell cycles. Science 274(5293):1672–1677CrossRefPubMedGoogle Scholar
  44. 44.
    Wang TC et al (1994) Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369(6482):669–671CrossRefPubMedGoogle Scholar
  45. 45.
    Elsheikh S et al (2008) CCND1 amplification and cyclin D1 expression in breast cancer and their relation with proteomic subgroups and patient outcome. Breast Cancer Res Treat 109(2):325–335CrossRefPubMedGoogle Scholar
  46. 46.
    Doisneau-Sixou SF et al (2003) Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr Relat Cancer 10(2):179–186CrossRefPubMedGoogle Scholar
  47. 47.
    Aaltonen K et al (2008) Cyclin D1 expression is associated with poor prognostic features in estrogen receptor positive breast cancer. Breast Cancer Res Treat 113(1):75–82Google Scholar
  48. 48.
    Umekita Y et al (2002) Overexpression of cyclin D1 predicts for poor prognosis in estrogen receptor-negative breast cancer patients. Int J Cancer 98(3):415–418CrossRefPubMedGoogle Scholar
  49. 49.
    Palomero T et al (2006) NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA 103(48):18261–18266CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Brenda Cohen
    • 1
  • Mamiko Shimizu
    • 1
  • Julia Izrailit
    • 1
    • 2
  • Nancy F. L. Ng
    • 3
  • Yuri Buchman
    • 3
  • James G. Pan
    • 3
  • Judy Dering
    • 4
  • Michael Reedijk
    • 1
    • 2
    • 5
    Email author
  1. 1.Campbell Family Institute for Breast Cancer ResearchOntario Cancer InstituteTorontoCanada
  2. 2.Department of Medical Biophysics, Faculty of MedicineUniversity of TorontoTorontoCanada
  3. 3.Campbell Family Institute for Breast Cancer ResearchUniversity Health NetworkTorontoCanada
  4. 4.Division of Hematology/Oncology, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesUSA
  5. 5.Department of Surgical Oncology, Princess Margaret HospitalUniversity Health NetworkTorontoCanada

Personalised recommendations