Breast Cancer Research and Treatment

, Volume 122, Issue 3, pp 661–670 | Cite as

High ACAT1 expression in estrogen receptor negative basal-like breast cancer cells is associated with LDL-induced proliferation

  • Caryl J. Antalis
  • Tyler Arnold
  • Tamkeen Rasool
  • Bonggi Lee
  • Kimberly K. Buhman
  • Rafat A. Siddiqui
Preclinical study


The specific role of dietary fat in breast cancer progression is unclear, although a low-fat diet was associated with decreased recurrence of estrogen receptor alpha negative (ER) breast cancer. ER basal-like MDA-MB-231 and MDA-MB-436 breast cancer cell lines contained a greater number of cytoplasmic lipid droplets compared to luminal ER+ MCF-7 cells. Therefore, we studied lipid storage functions in these cells. Both triacylglycerol and cholesteryl ester (CE) concentrations were higher in the ER cells, but the ability to synthesize CE distinguished the two types of breast cancer cells. Higher baseline, oleic acid- and LDL-stimulated CE concentrations were found in ER compared to ER+ cells. The differences corresponded to greater mRNA and protein levels of acyl-CoA:cholesterol acyltransferase 1 (ACAT1), higher ACAT activity, higher caveolin-1 protein levels, greater LDL uptake, and lower de novo cholesterol synthesis in ER cells. Human LDL stimulated proliferation of ER MDA-MB-231 cells, but had little effect on proliferation of ER+ MCF-7 cells. The functional significance of these findings was demonstrated by the observation that the ACAT inhibitor CP-113,818 reduced proliferation of breast cancer cells, and specifically reduced LDL-induced proliferation of ER cells. Taken together, our studies show that a greater ability to take up, store and utilize exogenous cholesterol confers a proliferative advantage to basal-like ER breast cancer cells. Differences in lipid uptake and storage capability may at least partially explain the differential effect of a low-fat diet on human breast cancer recurrence.


Basal-like breast cancer Lipid droplets Cholesterol ACAT1 CAV1 



The authors would like to thank Maureen Harrington and Cary Mariash for helpful discussions. Gene expression data from the public/private consortium, the Expression Project for Oncology, led by the International Genomics Consortium, were included in this study. We thank Pfizer, Inc., for providing the ACAT inhibitor CP-113,818. This study was supported by the Clarian Values Fund for Research.


  1. 1.
    Tosi MR, Tugnoli V (2005) Cholesteryl esters in malignancy. Clin Chim Acta 359:27–45CrossRefPubMedGoogle Scholar
  2. 2.
    Freeman MR, Cinar B, Kim J, Mukhopadhyay NK, Di Vizio D, Adam RM, Solomon KR (2007) Transit of hormonal and EGF receptor-dependent signals through cholesterol-rich membranes. Steroids 72:210–217CrossRefPubMedGoogle Scholar
  3. 3.
    Firestone RA (1994) Low-density lipoprotein as a vehicle for targeting antitumor compounds to cancer cells. Bioconjug Chem 5:105–113CrossRefPubMedGoogle Scholar
  4. 4.
    Brown MS, Ho YK, Goldstein JL (1980) The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters. J Biol Chem 255:9344–9352PubMedGoogle Scholar
  5. 5.
    Frank PG, Cheung MW, Pavlides S, Llaverias G, Park DS, Lisanti MP (2006) Caveolin-1 and regulation of cellular cholesterol homeostasis. Am J Physiol Heart Circ Physiol 291:H677–H686CrossRefPubMedGoogle Scholar
  6. 6.
    Dessi S, Batetta B, Pani A, Spano O, Sanna F, Putzolu M, Bonatesta R, Piras S, Pani P (1997) Role of cholesterol synthesis and esterification in the growth of CEM and MOLT4 lymphoblastic cells. Biochem J 321(Pt 3):603–608PubMedGoogle Scholar
  7. 7.
    Batetta B, Pani A, Putzolu M, Sanna F, Bonatesta R, Piras S, Spano O, Mulas MF, Dessi S (1999) Correlation between cholesterol esterification, MDR1 gene expression and rate of cell proliferation in CEM and MOLT4 cell lines. Cell Prolif 32:49–61CrossRefPubMedGoogle Scholar
  8. 8.
    Stranzl A, Schmidt H, Winkler R, Kostner GM (1997) Low-density lipoprotein receptor mRNA in human breast cancer cells: influence by PKC modulators. Breast Cancer Res Treat 42:195–205CrossRefPubMedGoogle Scholar
  9. 9.
    Rotheneder M, Kostner GM (1989) Effects of low- and high-density lipoproteins on the proliferation of human breast cancer cells in vitro: differences between hormone-dependent and hormone-independent cell lines. Int J Cancer 43:875–879CrossRefPubMedGoogle Scholar
  10. 10.
    Chajes V, Mahon M, Kostner GM (1996) Influence of LDL oxidation on the proliferation of human breast cancer cells. Free Radic Biol Med 20:113–120CrossRefPubMedGoogle Scholar
  11. 11.
    Sorlie T, Wang Y, Xiao C, Johnsen H, Naume B, Samaha RR, Borresen-Dale AL (2006) Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms. BMC Genomics 7:127CrossRefPubMedGoogle Scholar
  12. 12.
    Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, Livasy C, Carey LA, Reynolds E, Dressler L, Nobel A, Parker J, Ewend MG, Sawyer LR, Wu J, Liu Y, Nanda R, Tretiakova M, Ruiz Orrico A, Dreher D, Palazzo JP, Perreard L, Nelson E, Mone M, Hansen H, Mullins M, Quackenbush JF, Ellis MJ, Olopade OI, Bernard PS, Perou CM (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96CrossRefPubMedGoogle Scholar
  13. 13.
    Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423CrossRefPubMedGoogle Scholar
  14. 14.
    Foulkes WD, Stefansson IM, Chappuis PO, Begin LR, Goffin JR, Wong N, Trudel M, Akslen LA (2003) Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 95:1482–1485PubMedGoogle Scholar
  15. 15.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  16. 16.
    Carr TP, Andresen CJ, Rudel LL (1993) Enzymatic determination of triglyceride, free cholesterol, and total cholesterol in tissue lipid extracts. Clin Biochem 26:39–42CrossRefPubMedGoogle Scholar
  17. 17.
    Temel RE, Gebre AK, Parks JS, Rudel LL (2003) Compared with acyl-CoA: cholesterol O-acyltransferase (ACAT) 1 and lecithin: cholesterol acyltransferase, ACAT2 displays the greatest capacity to differentiate cholesterol from sitosterol. J Biol Chem 278:47594–47601CrossRefPubMedGoogle Scholar
  18. 18.
    Antalis CJ, Arnold T, Lee B, Buhman KK, Siddiqui RA (2009) Docosahexaenoic acid is a substrate for ACAT1 and inhibits cholesteryl ester formation from oleic acid in MCF-10A cells. Prostaglandins Leukot Essent Fatty Acids 80:165–171CrossRefPubMedGoogle Scholar
  19. 19.
    Rasband WS (1997–2009) ImageJ. U. S. National Institutes of Health, BethesdaGoogle Scholar
  20. 20.
    Rago R, Mitchen J, Wilding G (1990) DNA fluorometric assay in 96-well tissue culture plates using Hoechst 33258 after cell lysis by freezing in distilled water. Anal Biochem 191:31–34CrossRefPubMedGoogle Scholar
  21. 21.
    Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6:1–6PubMedGoogle Scholar
  22. 22.
    Elstrodt F, Hollestelle A, Nagel JH, Gorin M, Wasielewski M, van den Ouweland A, Merajver SD, Ethier SP, Schutte M (2006) BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants. Cancer Res 66:41–45CrossRefPubMedGoogle Scholar
  23. 23.
    Blouin CM, Le Lay S, Lasnier F, Dugail I, Hajduch E (2008) Regulated association of caveolins to lipid droplets during differentiation of 3T3-L1 adipocytes. Biochem Biophys Res Commun 376:331–335CrossRefPubMedGoogle Scholar
  24. 24.
    Pol A, Martin S, Fernandez MA, Ingelmo-Torres M, Ferguson C, Enrich C, Parton RG (2005) Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies. Mol Biol Cell 16:2091–2105CrossRefPubMedGoogle Scholar
  25. 25.
    Pinilla SM, Honrado E, Hardisson D, Benitez J, Palacios J (2006) Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Breast Cancer Res Treat 99:85–90CrossRefPubMedGoogle Scholar
  26. 26.
    Savage K, Lambros MB, Robertson D, Jones RL, Jones C, Mackay A, James M, Hornick JL, Pereira EM, Milanezi F, Fletcher CD, Schmitt FC, Ashworth A, Reis-Filho JS (2007) Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res 13:90–101CrossRefPubMedGoogle Scholar
  27. 27.
    Tan DS, Marchio C, Jones RL, Savage K, Smith IE, Dowsett M, Reis-Filho JS (2008) Triple negative breast cancer: molecular profiling and prognostic impact in adjuvant anthracycline-treated patients. Breast Cancer Res Treat 111:27–44CrossRefPubMedGoogle Scholar
  28. 28.
    Elsheikh SE, Green AR, Rakha EA, Samaka RM, Ammar AA, Powe D, Reis-Filho JS, Ellis IO (2008) Caveolin 1 and Caveolin 2 are associated with breast cancer basal-like and triple-negative immunophenotype. Br J Cancer 99:327–334CrossRefPubMedGoogle Scholar
  29. 29.
    Charafe-Jauffret E, Ginestier C, Monville F, Finetti P, Adelaide J, Cervera N, Fekairi S, Xerri L, Jacquemier J, Birnbaum D, Bertucci F (2006) Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 25:2273–2284CrossRefPubMedGoogle Scholar
  30. 30.
    Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527CrossRefPubMedGoogle Scholar
  31. 31.
    Michels KB, Mohllajee AP, Roset-Bahmanyar E, Beehler GP, Moysich KB (2007) Diet and breast cancer: a review of the prospective observational studies. Cancer 109:2712–2749CrossRefPubMedGoogle Scholar
  32. 32.
    Cleary MP, Grossmann ME (2009) Minireview: obesity and breast cancer: the estrogen connection. Endocrinology 150:2537–2542CrossRefPubMedGoogle Scholar
  33. 33.
    Blackburn GL, Wang KA (2007) Dietary fat reduction and breast cancer outcome: results from the Women’s Intervention Nutrition Study (WINS). Am J Clin Nutr 86:s878–s881PubMedGoogle Scholar
  34. 34.
    Farwell WR, Scranton RE, Lawler EV, Lew RA, Brophy MT, Fiore LD, Gaziano JM (2008) The association between statins and cancer incidence in a veterans population. J Natl Cancer Inst 100:134–139CrossRefPubMedGoogle Scholar
  35. 35.
    Brusselmans K, Timmermans L, Van de Sande T, Van Veldhoven PP, Guan G, Shechter I, Claessens F, Verhoeven G, Swinnen JV (2007) Squalene synthase, a determinant of Raft-associated cholesterol and modulator of cancer cell proliferation. J Biol Chem 282:18777–18785CrossRefPubMedGoogle Scholar
  36. 36.
    Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, Liao X, Iglehart JD, Livingston DM, Ganesan S (2006) X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9:121–132CrossRefPubMedGoogle Scholar
  37. 37.
    van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009CrossRefPubMedGoogle Scholar
  38. 38.
    Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, Macgrogan G, Bergh J, Cameron D, Goldstein D, Duss S, Nicoulaz AL, Brisken C, Fiche M, Delorenzi M, Iggo R (2005) Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24:4660–4671CrossRefPubMedGoogle Scholar
  39. 39.
    van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Caryl J. Antalis
    • 1
  • Tyler Arnold
    • 3
  • Tamkeen Rasool
    • 1
  • Bonggi Lee
    • 2
  • Kimberly K. Buhman
    • 2
  • Rafat A. Siddiqui
    • 1
    • 3
  1. 1.Cellular Biochemistry LaboratoryMethodist Research InstituteIndianapolisUSA
  2. 2.Department of Foods and NutritionPurdue UniversityWest LafayetteUSA
  3. 3.Indiana University School of MedicineIndianapolisINUSA

Personalised recommendations