Breast Cancer Research and Treatment

, Volume 122, Issue 1, pp 111–124 | Cite as

Transactivation of ErbB-2 induced by tumor necrosis factor α promotes NF-κB activation and breast cancer cell proliferation

  • Martín A. Rivas
  • Mercedes Tkach
  • Wendy Beguelin
  • Cecilia J. Proietti
  • Cinthia Rosemblit
  • Eduardo H. Charreau
  • Patricia V. Elizalde
  • Roxana Schillaci
Preclinical study

Abstract

Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine which, acting locally, induces tumor growth. Accumulating evidence, including our findings, showed that TNFα is mitogenic in breast cancer cells in vitro and in vivo. In the present study, we explored TNFα involvement on highly aggressive ErbB-2-overexpressing breast cancer cells. We found that TNFα induces ErbB-2 phosphorylation in mouse breast cancer C4HD cells and in the human breast cancer cell lines SK-BR-3 and BT-474. ErbB-2 phosphorylation at Tyr877 residue was mediated by TNFα-induced c-Src activation. Moreover, TNFα promoted ErbB-2/ErbB-3 heterocomplex formation, Akt activation and NF-κB transcriptional activation. Inhibition of ErbB-2 by addition of AG825, an epidermal growth factor receptor/ErbB-2-tyrosine kinase inhibitor, or knockdown of ErbB-2 by RNA interference strategy, blocked TNFα-induced NF-κB activation and proliferation. However, the humanized monoclonal antibody anti-ErbB-2 Herceptin could not inhibit TNFα ability to promote breast cancer growth. Interestingly, our work disclosed that TNFα is able to transactivate ErbB-2 and use it as an obligatory downstream signaling molecule in the generation of mitogenic signals. As TNFα has been shown to be present in the tumor microenvironment of a significant proportion of human infiltrating breast cancers, our findings would have clinical implication in ErbB-2-positive breast cancer treatment.

Keywords

ErbB-2 TNFα Herceptin c-Src 

Supplementary material

10549_2009_546_MOESM1_ESM.pdf (209 kb)
Supplementary material 1 (PDF 209 kb)

References

  1. 1.
    Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72:3666–3670CrossRefPubMedGoogle Scholar
  2. 2.
    Wu S, Boyer CM, Whitaker RS, Berchuck A, Wiener JR, Weinberg JB, Bast RC Jr (1993) Tumor necrosis factor alpha as an autocrine and paracrine growth factor for ovarian cancer: monokine induction of tumor cell proliferation and tumor necrosis factor alpha expression. Cancer Res 53:1939–1944PubMedGoogle Scholar
  3. 3.
    Naylor MS, Stamp GW, Foulkes WD, Eccles D, Balkwill FR (1993) Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression. J Clin Invest 91:2194–2206CrossRefPubMedGoogle Scholar
  4. 4.
    Rubio MF, Werbajh S, Cafferata EG, Quaglino A, Colo GP, Nojek IM, Kordon EC, Nahmod VE, Costas MA (2006) TNF-alpha enhances estrogen-induced cell proliferation of estrogen-dependent breast tumor cells through a complex containing nuclear factor-kappa B. Oncogene 25:1367–1377CrossRefPubMedGoogle Scholar
  5. 5.
    Rivas MA, Carnevale RP, Proietti CJ, Rosemblit C, Beguelin W, Salatino M, Charreau EH, Frahm I, Sapia S, Brouckaert P, Elizalde PV, Schillaci R (2008) TNFalpha acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, JNK, Akt and NF-kappaB-dependent pathways. Exp Cell Res 314:509–529CrossRefPubMedGoogle Scholar
  6. 6.
    Garcia-Tunon I, Ricote M, Ruiz A, Fraile B, Paniagua R, Royuela M (2006) Role of tumor necrosis factor-alpha and its receptors in human benign breast lesions and tumors (in situ and infiltrative). Cancer Sci 97:1044–1049CrossRefPubMedGoogle Scholar
  7. 7.
    Pirianov G, Colston KW (2001) Interactions of vitamin D analogue CB1093, TNFalpha and ceramide on breast cancer cell apoptosis. Mol Cell Endocrinol 172:69–78CrossRefPubMedGoogle Scholar
  8. 8.
    Lyu MA, Rosenblum MG (2005) The immunocytokine scFv23/TNF sensitizes HER-2/neu-overexpressing SKBR-3 cells to tumor necrosis factor (TNF) via up-regulation of TNF receptor-1. Mol Cancer Ther 4:1205–1213CrossRefPubMedGoogle Scholar
  9. 9.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182CrossRefPubMedGoogle Scholar
  10. 10.
    Zhou BP, Hu MC, Miller SA, Yu Z, Xia W, Lin SY, Hung MC (2000) HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-kappaB pathway. J Biol Chem 275:8027–8031CrossRefPubMedGoogle Scholar
  11. 11.
    Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137CrossRefPubMedGoogle Scholar
  12. 12.
    Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, Ratzkin BJ, Yarden Y (1996) A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 16:5276–5287PubMedGoogle Scholar
  13. 13.
    Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, Rowland AM, Kotts C, Carver ME, Shepard HM (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 89:4285–4289CrossRefPubMedGoogle Scholar
  14. 14.
    Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341–354CrossRefPubMedGoogle Scholar
  15. 15.
    Cabioglu N, Summy J, Miller C, Parikh NU, Sahin AA, Tuzlali S, Pumiglia K, Gallick GE, Price JE (2005) CXCL-12/stromal cell-derived factor-1alpha transactivates HER2-neu in breast cancer cells by a novel pathway involving Src kinase activation. Cancer Res 65:6493–6497CrossRefPubMedGoogle Scholar
  16. 16.
    Yamauchi T, Yamauchi N, Ueki K, Sugiyama T, Waki H, Miki H, Tobe K, Matsuda S, Tsushima T, Yamamoto T, Fujita T, Taketani Y, Fukayama M, Kimura S, Yazaki Y, Nagai R, Kadowaki T (2000) Constitutive tyrosine phosphorylation of ErbB-2 via Jak2 by autocrine secretion of prolactin in human breast cancer. J Biol Chem 275:33937–33944CrossRefPubMedGoogle Scholar
  17. 17.
    Qiu Y, Ravi L, Kung HJ (1998) Requirement of ErbB2 for signalling by interleukin-6 in prostate carcinoma cells. Nature 393:83–85CrossRefPubMedGoogle Scholar
  18. 18.
    Lee CW, Lin CC, Lin WN, Liang KC, Luo SF, Wu CB, Wang SW, Yang CM (2007) TNF-alpha induces MMP-9 expression via activation of Src/EGFR, PDGFR/PI3K/Akt cascade and promotion of NF-kappaB/p300 binding in human tracheal smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 292:L799–L812CrossRefPubMedGoogle Scholar
  19. 19.
    Chokki M, Mitsuhashi H, Kamimura T (2006) Metalloprotease-dependent amphiregulin release mediates tumor necrosis factor-alpha-induced IL-8 secretion in the human airway epithelial cell line NCI-H292. Life Sci 78:3051–3057CrossRefPubMedGoogle Scholar
  20. 20.
    Chen WN, Woodbury RL, Kathmann LE, Opresko LK, Zangar RC, Wiley HS, Thrall BD (2004) Induced autocrine signaling through the epidermal growth factor receptor contributes to the response of mammary epithelial cells to tumor necrosis factor alpha. J Biol Chem 279:18488–18496CrossRefPubMedGoogle Scholar
  21. 21.
    Balana ME, Labriola L, Salatino M, Movsichoff F, Peters G, Charreau EH, Elizalde PV (2001) Activation of ErbB-2 via a hierarchical interaction between ErbB-2 and type I insulin-like growth factor receptor in mammary tumor cells. Oncogene 20:34–47CrossRefPubMedGoogle Scholar
  22. 22.
    Labriola L, Salatino M, Proietti CJ, Pecci A, Coso OA, Kornblihtt AR, Charreau EH, Elizalde PV (2003) Heregulin induces transcriptional activation of the progesterone receptor by a mechanism that requires functional ErbB-2 and mitogen-activated protein kinase activation in breast cancer cells. Mol Cell Biol 23:1095–1111CrossRefPubMedGoogle Scholar
  23. 23.
    Lanari C, Kordon E, Molinolo A, Pasqualini CD, Charreau EH (1989) Mammary adenocarcinomas induced by medroxyprogesterone acetate: hormone dependence and EGF receptors of BALB/c in vivo sublines. Int J Cancer 43:845–850CrossRefPubMedGoogle Scholar
  24. 24.
    Balana ME, Lupu R, Labriola L, Charreau EH, Elizalde PV (1999) Interactions between progestins and heregulin (HRG) signaling pathways: HRG acts as mediator of progestins proliferative effects in mouse mammary adenocarcinomas. Oncogene 18:6370–6379CrossRefPubMedGoogle Scholar
  25. 25.
    Salatino M, Beguelin W, Peters MG, Carnevale R, Proietti CJ, Galigniana MD, Vedoy CG, Schillaci R, Charreau EH, Sogayar MC, Elizalde PV (2006) Progestin-induced caveolin-1 expression mediates breast cancer cell proliferation. Oncogene 25:7723–7739CrossRefPubMedGoogle Scholar
  26. 26.
    Plowman GD, Culouscou JM, Whitney GS, Green JM, Carlton GW, Foy L, Neubauer MG, Shoyab M (1993) Ligand-specific activation of HER4/p180erbB4, a fourth member of the epidermal growth factor receptor family. Proc Natl Acad Sci USA 90:1746–1750CrossRefPubMedGoogle Scholar
  27. 27.
    Brockhoff G, Heiss P, Schlegel J, Hofstaedter F, Knuechel R (2001) Epidermal growth factor receptor, c-erbB2 and c-erbB3 receptor interaction, and related cell cycle kinetics of SK-BR-3 and BT474 breast carcinoma cells. Cytometry 44:338–348CrossRefPubMedGoogle Scholar
  28. 28.
    Xu W, Yuan X, Beebe K, Xiang Z, Neckers L (2007) Loss of Hsp90 association up-regulates Src-dependent ErbB2 activity. Mol Cell Biol 27:220–228CrossRefPubMedGoogle Scholar
  29. 29.
    Ishizawar RC, Miyake T, Parsons SJ (2007) c-Src modulates ErbB2 and ErbB3 heterocomplex formation and function. Oncogene 26:3503–3510CrossRefPubMedGoogle Scholar
  30. 30.
    Huang WC, Chen JJ, Inoue H, Chen CC (2003) Tyrosine phosphorylation of I-kappa B kinase alpha/beta by protein kinase C-dependent c-Src activation is involved in TNF-alpha-induced cyclooxygenase-2 expression. J Immunol 170:4767–4775PubMedGoogle Scholar
  31. 31.
    Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF III, Hynes NE (2003) The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci USA 100:8933–8938CrossRefPubMedGoogle Scholar
  32. 32.
    Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M (1999) NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol 19:2690–2698PubMedGoogle Scholar
  33. 33.
    Kim H, Chan R, Dankort DL, Zuo D, Najoukas M, Park M, Muller WJ (2005) The c-Src tyrosine kinase associates with the catalytic domain of ErbB-2: implications for ErbB-2 mediated signaling and transformation. Oncogene 24:7599–7607CrossRefPubMedGoogle Scholar
  34. 34.
    Belsches-Jablonski AP, Biscardi JS, Peavy DR, Tice DA, Romney DA, Parsons SJ (2001) Src family kinases and HER2 interactions in human breast cancer cell growth and survival. Oncogene 20:1465–1475CrossRefPubMedGoogle Scholar
  35. 35.
    Pincheira R, Castro AF, Ozes ON, Idumalla PS, Donner DB (2008) Type 1 TNF receptor forms a complex with and uses Jak2 and c-Src to selectively engage signaling pathways that regulate transcription factor activity. J Immunol 181:1288–1298PubMedGoogle Scholar
  36. 36.
    Yamaoka T, Yan F, Cao H, Hobbs SS, Dise RS, Tong W, Polk DB (2008) Transactivation of EGF receptor and ErbB2 protects intestinal epithelial cells from TNF-induced apoptosis. Proc Natl Acad Sci USA 105:11772–11777CrossRefPubMedGoogle Scholar
  37. 37.
    Hudziak RM, Lewis GD, Shalaby MR, Eessalu TE, Aggarwal BB, Ullrich A, Shepard HM (1988) Amplified expression of the HER2/ERBB2 oncogene induces resistance to tumor necrosis factor alpha in NIH 3T3 cells. Proc Natl Acad Sci USA 85:5102–5106CrossRefPubMedGoogle Scholar
  38. 38.
    Biswas DK, Shi Q, Baily S, Strickland I, Ghosh S, Pardee AB, Iglehart JD (2004) NF-kappa B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci USA 101:10137–10142CrossRefPubMedGoogle Scholar
  39. 39.
    Singh S, Shi Q, Bailey ST, Palczewski MJ, Pardee AB, Iglehart JD, Biswas DK (2007) Nuclear factor-kappaB activation: a molecular therapeutic target for estrogen receptor-negative and epidermal growth factor receptor family receptor-positive human breast cancer. Mol Cancer Ther 6:1973–1982CrossRefPubMedGoogle Scholar
  40. 40.
    Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20:719–726CrossRefPubMedGoogle Scholar
  41. 41.
    Ritter CA, Perez-Torres M, Rinehart C, Guix M, Dugger T, Engelman JA, Arteaga CL (2007) Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 13:4909–4919CrossRefPubMedGoogle Scholar
  42. 42.
    Johnston S, Trudeau M, Kaufman B, Boussen H, Blackwell K, LoRusso P, Lombardi DP, Ben Ahmed S, Citrin DL, DeSilvio ML, Harris J, Westlund RE, Salazar V, Zaks TZ, Spector NL (2008) Phase II study of predictive biomarker profiles for response targeting human epidermal growth factor receptor 2 (HER-2) in advanced inflammatory breast cancer with lapatinib monotherapy. J Clin Oncol 26:1066–1072CrossRefPubMedGoogle Scholar
  43. 43.
    Proietti CJ, Rosemblit C, Beguelin W, Rivas MA, Diaz Flaqué MC, Charreau EH, Schillaci R, Elizalde PV (2009) Activation of Stat3 by heregulin/ErbB-2 through the co-option of progesterone receptor signaling drives breast cancer growth. Mol Cell Biol 29:1249–1265CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Martín A. Rivas
    • 1
  • Mercedes Tkach
    • 1
  • Wendy Beguelin
    • 1
  • Cecilia J. Proietti
    • 1
  • Cinthia Rosemblit
    • 1
  • Eduardo H. Charreau
    • 1
  • Patricia V. Elizalde
    • 1
  • Roxana Schillaci
    • 1
  1. 1.Laboratory of Molecular Mechanisms of CarcinogenesisInstituto de Biología y Medicina Experimental (IBYME)Buenos AiresArgentina

Personalised recommendations