Breast Cancer Research and Treatment

, Volume 118, Issue 2, pp 241–254 | Cite as

Cancer stem cells in breast cancer and metastasis

  • Jessica C. Lawson
  • Gregory L. Blatch
  • Adrienne L. Edkins


The cancer stem cell theory poses that cancers develop from a subset of malignant cells that possess stem cell characteristics and has been proposed to account for the development of a variety of malignancies, including breast cancer. These cancer stem cells (CSC) possess characteristics of both stem cells and cancer cells, in that they have the properties of self-renewal, asymmetric cell division, resistance to apoptosis, independent growth, tumourigenicity and metastatic potential. A CSC origin for breast cancer can neatly explain both the heterogeneity of breast cancers and the relapse of the tumours after treatment. However, many reports on CSC in the breast are contradictory. There is variation with respect to how breast cancer stem cells should be identified, their characteristics and a possible lack of correlation between clinical outcome and breast cancer stem cell status of a tumour. These combined factors have made breast cancer stem cells a highly contentious issue. In this review, we highlight the progress in the analysis of cancer stem cells, with an emphasis on breast cancer.


Breast cancer stem cells CD44+/CD42 Tumourigenicity Metastasis Hsp90 



The authors would like to acknowledge the Ernst and Ethel Eriksen Trust, National Research Foundation, Rhodes University, Cancer Research Initiative of South Africa, Claude Leon Foundation and Deutscher Akademischer Austausch Dienst for funding. We have attempted to review the literature completely; however, we accept that we are not able to cite all contributions to the field of breast cancer stem cells and apologise if we have inadvertently omitted any key contributions to this field.


  1. 1.
    Bertram JS (2000) The molecular biology of cancer. Mol Asp Med 21(6):167CrossRefGoogle Scholar
  2. 2.
    Hart IR (2004) Biology of cancer. Oncology 32(3):1Google Scholar
  3. 3.
    Garcia M, Jemal A, Ward EM, Center MM, Hao Y, Siegel RL, Thun MJ (2007) Global cancer facts and figures 2007. American Cancer Society, Atlanta, GAGoogle Scholar
  4. 4.
    Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea–a paradigm shift. Cancer Res 66(4):1883–1890 discussion 1895-1886PubMedCrossRefGoogle Scholar
  5. 5.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737PubMedCrossRefGoogle Scholar
  6. 6.
    Cobaleda C, Gutierrez-Cianca N, Perez-Losada J, Flores T, Garcia-Sanz R, Gonzalez M, Sanchez-Garcia I (2000) A primitive hematopoietic cell is the target for the leukemic transformation in human Philadelphia-positive acute lymphoblastic leukemia. Blood 95(3):1007PubMedGoogle Scholar
  7. 7.
    Cox CV, Evely RS, Oakhill A, Pamphilon DH, Goulden NJ, Blair A (2004) Characterization of acute lymphoblastic leukemia progenitor cells. Blood 104(9):2919PubMedCrossRefGoogle Scholar
  8. 8.
    Cox CV, Martin HM, Kearns PR, Virgo P, Evely RS, Blair A (2007) Characterization of a progenitor cell population in childhood T-cell acute lymphoblastic leukemia. Blood 109(2):674PubMedCrossRefGoogle Scholar
  9. 9.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988PubMedCrossRefGoogle Scholar
  10. 10.
    Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Perez Alea M, Richel DJ, Stassi G, Medema JP (2008) Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA 105(36):13427–13432PubMedCrossRefGoogle Scholar
  11. 11.
    Odoux C, Fohrer H, Hoppo T, Guzik L, Stolz DB, Lewis DW, Gollin SM, Gamblin TC, Geller DA, Lagasse E (2008) A stochastic model for cancer stem cell origin in metastatic colon cancer. Cancer Res 68(17):6932–6941PubMedCrossRefGoogle Scholar
  12. 12.
    Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP et al (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1(4):389–402PubMedCrossRefGoogle Scholar
  13. 13.
    Chu P, Clanton DJ, Snipas TS, Lee J, Mitchell E, Nguyen ML, Hare E, Peach RJ (2009) Characterization of a subpopulation of colon cancer cells with stem cell-like properties. Int J Cancer 124(6):1312–1321PubMedCrossRefGoogle Scholar
  14. 14.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828PubMedGoogle Scholar
  15. 15.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke M, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037PubMedCrossRefGoogle Scholar
  16. 16.
    Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323PubMedCrossRefGoogle Scholar
  17. 17.
    Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG (2007) Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44 + alpha2beta1 + cell population is enriched in tumor-initiating cells. Cancer Res 67(14):6796–6805PubMedCrossRefGoogle Scholar
  18. 18.
    Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15(3):504–514PubMedCrossRefGoogle Scholar
  19. 19.
    Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67(10):4827–4833PubMedCrossRefGoogle Scholar
  20. 20.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23):10946PubMedCrossRefGoogle Scholar
  21. 21.
    Bonkhoff H (1996) Role of the basal cells in premalignant changes of the human prostate: a stem cell concept for the development of prostate cancer. Eur Urol 30(2):201–205PubMedGoogle Scholar
  22. 22.
    Dou J, Pan M, Wen P, Li Y, Tang Q, Chu L, Zhao F, Jiang C, Hu W, Hu K et al (2007) Isolation and identification of cancer stem-like cells from murine melanoma cell lines. Cell Mol Immunol 4(6):467–472PubMedGoogle Scholar
  23. 23.
    Qiang L, Yang Y, Ma YJ, Chen FH, Zhang LB, Liu W, Qi Q, Lu N, Tao L, Wang XT et al (2009) Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Lett 279(1):13–21PubMedCrossRefGoogle Scholar
  24. 24.
    Domen J, Gandy KL, Weissman IL (1998) Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood 91(7):2272PubMedGoogle Scholar
  25. 25.
    Peters R, Leyvraz S, Perey L (1998) Apoptotic regulation in primitive hematopoietic precursors. Blood 92(6):2041PubMedGoogle Scholar
  26. 26.
    Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC et al (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100(9):672PubMedCrossRefGoogle Scholar
  27. 27.
    Moltzahn FR, Volkmer J-P, Rottke D, Ackermann R (2008) “Cancer stem cells”–lessons from Hercules to fight the hydra. Urol Oncol 26(6):581PubMedGoogle Scholar
  28. 28.
    Hill RP (2006) Identifying cancer stem cells in solid tumors: case not proven. Cancer Res 66(4):1891PubMedCrossRefGoogle Scholar
  29. 29.
    Imyanitov EN, Hanson KP (2004) Mechanisms of breast cancer. Drug Disc Today 1(2):235CrossRefGoogle Scholar
  30. 30.
    Polyak K (2007) Breast cancer: origins and evolution. J Clin Invest 117(11):3155–3163PubMedCrossRefGoogle Scholar
  31. 31.
    Burns JS, Abdallah BM, Guldberg P, Rygaard J, Schroder HD, Kassem M (2005) Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells. Cancer Res 65(8):3126–3135PubMedGoogle Scholar
  32. 32.
    Rosland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, Mysliwietz J, Tonn JC, Goldbrunner R, Lonning PE et al (2009) Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res 69(13):5331–5339PubMedCrossRefGoogle Scholar
  33. 33.
    Shi C, Mai Y, Zhu Y, Cheng T, Su Y (2007) Spontaneous transformation of a clonal population of dermis-derived multipotent cells in culture. In Vitro Cell Dev Biol Anim 43(8–9):290–296PubMedCrossRefGoogle Scholar
  34. 34.
    Siebzehnrubl FA, Jeske I, Muller D, Buslei R, Coras R, Hahnen E, Huttner HB, Corbeil D, Kaesbauer J, Appl T et al (2009) Spontaneous in vitro transformation of adult neural precursors into stem-like cancer cells. Brain Pathol 19(3):399–408PubMedCrossRefGoogle Scholar
  35. 35.
    Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, Bernad A (2005) Spontaneous human adult stem cell transformation. Cancer Res 65(8):3035–3039PubMedGoogle Scholar
  36. 36.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  37. 37.
    Smith GH (1996) Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat 39(1):21PubMedCrossRefGoogle Scholar
  38. 38.
    Kordon EC, Smith GH (1998) An entire functional mammary gland may comprise the progeny from a single cell. Development 125(10):1921PubMedGoogle Scholar
  39. 39.
    Stingl J, Eaves CJ, Kuusk U, Emerman JT (1998) Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation 63(4):201–213PubMedCrossRefGoogle Scholar
  40. 40.
    Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, Bissell MJ, Petersen OW (2007) Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 177(1):87–101PubMedCrossRefGoogle Scholar
  41. 41.
    Gudjonsson T, Villadsen R, Nielsen HL, Ronnov-Jessen L, Bissel MJ, Petersen OW (2002) Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev 16:693–706PubMedCrossRefGoogle Scholar
  42. 42.
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270PubMedCrossRefGoogle Scholar
  43. 43.
    Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88PubMedCrossRefGoogle Scholar
  44. 44.
    Dey D, Saxena M, Paranjape AN, Krishnan V, Giraddi R, Kumar MV, Mukherjee G, Rangarajan A (2009) Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture. PLoS ONE 4(4):e5329PubMedCrossRefGoogle Scholar
  45. 45.
    Williams C, Helguero L, Edvardsson K, Haldosen LA, Gustafsson JA (2009) Gene expression in murine mammary epithelial stem cell-like cells shows similarities to human breast cancer gene expression. Breast Cancer Res 11(3):R26PubMedCrossRefGoogle Scholar
  46. 46.
    Zucchi I, Sanzone S, Astigiano S, Pelucchi P, Scotti M, Valsecchi V, Barbieri O, Bertoli G, Albertini A, Reinbold RA et al (2007) The properties of a mammary gland cancer stem cell. Proc Natl Acad Sci USA 104(25):10476–10481PubMedCrossRefGoogle Scholar
  47. 47.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111PubMedCrossRefGoogle Scholar
  48. 48.
    Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, Gordon SA, Shimada Y, Wang TC (2009) Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27(5):1006–1020PubMedCrossRefGoogle Scholar
  49. 49.
    Palapattu GS, Wu C, Silvers CR, Martin HB, Williams K, Salamone L, Bushnell T, Huang LS, Yang Q, Huang J (2009) Selective expression of CD44, a putative prostate cancer stem cell marker, in neuroendocrine tumor cells of human prostate cancer. Prostate 69(7):787–798PubMedCrossRefGoogle Scholar
  50. 50.
    Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65(13):5506–5511PubMedCrossRefGoogle Scholar
  51. 51.
    Zhou J, Zhang H, Gu P, Margolick JB, Yin D, Zhang Y (2009) Cancer stem/progenitor cell active compound 8-quinolinol in combination with paclitaxel achieves an improved cure of breast cancer in the mouse model. Breast Cancer Res Treat 115:269PubMedCrossRefGoogle Scholar
  52. 52.
    Wright M, Calcagno A, Salcido C, Carlson M, Ambudkar S, Varticovski L (2008) Brca1 breast tumors contain distinct CD44 +/CD24- and CD133 + cells with cancer stem cell characteristics. Breast Cancer Res 10(1):R10PubMedCrossRefGoogle Scholar
  53. 53.
    Li Z, Liu CP, He YL, Tian Y, Huang T (2008) Analysis on clone in vitro and tumorigenic capacity in vivo of different subsets cells from the MCF-7 human breast cancer cell line. Sichuan Da Xue Xue Bao Yi Xue Ban 39(4):547–549PubMedGoogle Scholar
  54. 54.
    Yu M, Smolen GA, Zhang J, Wittner B, Schott BJ, Brachtel E, Ramaswamy S, Maheswaran S, Haber DA (2009) A developmentally regulated inducer of EMT, LBX1, contributes to breast cancer progression. Genes Dev 23(15):1737–1742PubMedCrossRefGoogle Scholar
  55. 55.
    Xiao Y, Ye Y, Yearsley K, Jones S, Barsky SH (2008) The lymphovascular embolus of inflammatory breast cancer expresses a stem cell-like phenotype. Am J Pathol 173(2):561–574PubMedCrossRefGoogle Scholar
  56. 56.
    Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, Van de Rijn M, Waltham M et al (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24(3):227–235PubMedCrossRefGoogle Scholar
  57. 57.
    Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, Kwei KA, Hernandez-Boussard T, Wang P, Gazdar AF et al (2009) Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS ONE 4(7):e6146PubMedCrossRefGoogle Scholar
  58. 58.
    Kondo T (2007) Stem cell-like cancer cells in cancer cell lines. Cancer Biomark 3(4–5):245–250PubMedGoogle Scholar
  59. 59.
    Mylona E, Giannopoulou I, Fasomytakis E, Nomikos A, Magkou C, Bakarakos P, Nakopoulou L (2008) The clinicopathologic and prognostic significance of CD44 +/CD24-/low and CD44-/CD24 + tumor cells in invasive breast carcinomas. Hum Pathol 39(7):1096PubMedCrossRefGoogle Scholar
  60. 60.
    Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R, Badve S, Nakshatri H (2006) CD44 +/CD24- breast cancer cells exhibit enhanced invasive properties, an early step necessary for metastasis. Breast Cancer Res 8:R59PubMedCrossRefGoogle Scholar
  61. 61.
    Honeth G, Bendahl PO, Ringner M, Saal LH, Gruvberger-Saal SK, Lovgren K, Grabau D, Ferno M, Borg A, Hegardt C (2008) The CD44 +/CD24- phenotype is enriched in basal-like breast tumors. Breast Cancer Res 10(3):R53PubMedCrossRefGoogle Scholar
  62. 62.
    Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10(2):R25PubMedCrossRefGoogle Scholar
  63. 63.
    Zheng X, Shen G, Yang X, Liu W (2007) Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res 67(8):3691–3697PubMedCrossRefGoogle Scholar
  64. 64.
    Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273PubMedCrossRefGoogle Scholar
  65. 65.
    Liu AY, True LD, LaTray L, Nelson PS, Ellis WJ, Vessella RL, Lange PH, Hood L, van den Engh G (1997) Cell-cell interaction in prostate gene regulation and cytodifferentiation. Proc Natl Acad Sci USA 94(20):10705–10710PubMedCrossRefGoogle Scholar
  66. 66.
    Korkaya H, Paulson A, Iovino F, Wicha MS (2008) HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 27(47):6120–6130PubMedCrossRefGoogle Scholar
  67. 67.
    Lu ZQ, Li HG, Zhang HZ, Fan MJ, Shen XM, He XX (2008) Expression and significance of CD44(+)ESA(+)CD24(-/low), stem cell markers for breast cancer, in non-small-cell lung carcinoma. Ai Zheng 27(6):575–579PubMedGoogle Scholar
  68. 68.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555PubMedCrossRefGoogle Scholar
  69. 69.
    Balicki D (2007) Moving forward in human mammary stem cell biology and breast cancer prognostication using ALDH1. Cell Stem Cell 1(5):485–487CrossRefGoogle Scholar
  70. 70.
    Nishii T, Yashiro M, Shinto O, Sawada T, Ohira M, Hirakawa K (2009) Cancer stem cell-like SP cells have a high adhesion ability to the peritoneum in gastric carcinoma. Cancer Sci 100(8):1397–1402PubMedCrossRefGoogle Scholar
  71. 71.
    Pontier SM, Muller WJ (2009) Integrins in mammary-stem-cell biology and breast-cancer progression–a role in cancer stem cells? J Cell Sci 122(Pt 2):207–214PubMedCrossRefGoogle Scholar
  72. 72.
    Pfeiffer MJ, Schalken JA (2009) Stem cell characteristics in prostate cancer cell lines. Eur Urol. doi:10.1016/j.eururo.2009.01.015
  73. 73.
    Lee RH, Seo MJ, Pulin AA, Gregory CA, Ylostalo J, Prockop DJ (2009) The CD34-like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood 113(4):816–826PubMedCrossRefGoogle Scholar
  74. 74.
    Cariati M, Naderi A, Brown JP, Smalley MJ, Pinder SE, Caldas C, Purushotham AD (2008) Alpha-6 integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line. Int J Cancer 122(2):298–304PubMedCrossRefGoogle Scholar
  75. 75.
    Liu S, Dontu G, Wicha MS (2005) Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 7(3):86–95PubMedCrossRefGoogle Scholar
  76. 76.
    Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843PubMedCrossRefGoogle Scholar
  77. 77.
    Seidensticker MJ, Behrens J (2000) Biochemical interactions in the wnt pathway. Biochim Biophys Acta 1495(2):168PubMedCrossRefGoogle Scholar
  78. 78.
    Lejeune S, Huguet EL, Hamby A, Poulsom R, Harris AL (1995) Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin Cancer Res 1(2):215–222PubMedGoogle Scholar
  79. 79.
    Brown AM (2001) Wnt signaling in breast cancer: have we come full circle? Breast Cancer Res 3(6):351–355PubMedCrossRefGoogle Scholar
  80. 80.
    Wielenga VJ, Smits R, Korinek V, Smit L, Kielman M, Fodde R, Clevers H, Pals ST (1999) Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol 154(2):515–523PubMedGoogle Scholar
  81. 81.
    Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, Rowlands T, Egeblad M, Cowin P, Werb Z et al (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proceedings of the National Academy of Science USA 100:15853–15858CrossRefGoogle Scholar
  82. 82.
    Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, Clouthier SG, Wicha MS (2009) Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol 7(6):e1000121PubMedCrossRefGoogle Scholar
  83. 83.
    Wang Z, Li Y, Banerjee S, Sarkar FH (2009) Emerging role of Notch in stem cells and cancer. Cancer Lett 279(1):8PubMedCrossRefGoogle Scholar
  84. 84.
    Zardawi SJ (2009) Dysregulation of Hedgehog, Wnt and Notch signalling pathways in breast cancer. Histol Histopathol 24(1699–5848):385–398PubMedGoogle Scholar
  85. 85.
    Farnie G, Clarke RB (2007) Mammary stem cells and breast cancer-role of Notch signalling. Stem Cell Rev 3(2):169–175PubMedCrossRefGoogle Scholar
  86. 86.
    Mine T, Matsueda S, Li Y, Tokumitsu H, Gao H, Danes C, Wong KK, Wang X, Ferrone S, Ioannides CG (2009) Breast cancer cells expressing stem cell markers CD44 + CD24 lo are eliminated by Numb-1 peptide-activated T cells. Cancer Immunol Immunother 58(8):1185–1194PubMedCrossRefGoogle Scholar
  87. 87.
    Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17(2):165–172PubMedCrossRefGoogle Scholar
  88. 88.
    Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66(12):6063–6071PubMedCrossRefGoogle Scholar
  89. 89.
    Yoo MH, Hatfield DL (2008) The cancer stem cell theory: is it correct? Mol Cells 26(5):514–516PubMedGoogle Scholar
  90. 90.
    Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593PubMedCrossRefGoogle Scholar
  91. 91.
    Dontu G (2008) Breast cancer stem cell markers–the rocky road to clinical applications. Breast Cancer Res 10(5):110PubMedCrossRefGoogle Scholar
  92. 92.
    Fillmore C, Kuperwasser C (2007) Human breast cancer stem cell markers CD44 and CD24: enriching for cells with functional properties in mice or in man? Breast Cancer Res 9(3):303PubMedCrossRefGoogle Scholar
  93. 93.
    Kennedy JA, Barabe F, Poeppl AG, Wang JCY, Dick JE (2007) Comment on “Tumor growth need not be driven by rare cancer stem cells”. Science %R 101126/science1149590 318(5857):1722cGoogle Scholar
  94. 94.
    Chen Y, Rittling SR (2003) Novel murine mammary epithelial cell lines that form osteolytic bone metastases: effect of strain background on tumor homing. Clin Exp Metastasis 20(2):111–120PubMedCrossRefGoogle Scholar
  95. 95.
    Kondo M, Scherer DC, Miyamoto T, King AG, Akashi K, Sugamura K, Weissman IL (2000) Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature 407(6802):383–386PubMedCrossRefGoogle Scholar
  96. 96.
    Pollett JB, Corsi KA, Weiss KR, Cooper GM, Barry DA, Gharaibeh B, Huard J (2007) Malignant transformation of multipotent muscle-derived cells by concurrent differentiation signals. Stem Cells 25(9):2302–2311PubMedCrossRefGoogle Scholar
  97. 97.
    Khaled WT, Read EK, Nicholson SE, Baxter FO, Brennan AJ, Came PJ, Sprigg N, McKenzie AN, Watson CJ (2007) The IL-4/IL-13/Stat6 signalling pathway promotes luminal mammary epithelial cell development. Development 134(15):2739–2750PubMedCrossRefGoogle Scholar
  98. 98.
    Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J et al (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69(4):1302–1313PubMedCrossRefGoogle Scholar
  99. 99.
    Weber GF, Ashkar S (2000) Molecular mechanisms of tumor dissemination in primary and metastatic brain cancers. Brain Res Bull 53(4):421–424PubMedCrossRefGoogle Scholar
  100. 100.
    Gralow JR (2005) Optimizing the treatment of metastatic breast cancer. Breast Cancer Res Treat 89:S9PubMedCrossRefGoogle Scholar
  101. 101.
    Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6):537–549PubMedCrossRefGoogle Scholar
  102. 102.
    Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H (2005) Prevalence of CD44 +/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11(3):1154PubMedGoogle Scholar
  103. 103.
    Ling LJ, Wang S, Liu XA, Shen EC, Ding Q, Lu C, Xu J, Cao QH, Zhu HQ, Wang F (2008) A novel mouse model of human breast cancer stem-like cells with high CD44 + CD24-/lower phenotype metastasis to human bone. Chin Med J 121(20):1980–1986PubMedGoogle Scholar
  104. 104.
    Liu R, Wang X, Chen GY, Dalerba P, Gurney A, Hoey T, Sherlock G, Lewicki J, Shedden K, Clarke MF (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356(3):217–226PubMedCrossRefGoogle Scholar
  105. 105.
    Mastro LD, Clavarezza M, Venturini M (2007) Reducing the risk of distant metastases in breast cancer patients: role of aromatase inhibitors. Cancer Treat Rev 33(8):681PubMedCrossRefGoogle Scholar
  106. 106.
    Brown LF, Berse B, Van de Water L, Papadopoulos-Sergiou A, Perruzzi CA, Manseau EJ, Dvorak HF, Senger DR (1992) Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial surfaces. Mol Biol Cell 3(10):1169–1180PubMedGoogle Scholar
  107. 107.
    Weber GF, Ashkar S, Cantor H (1997) Interaction between CD44 and osteopontin as a potential basis for metastasis formation. Proc Assoc Am Physicians 109(1):1–9PubMedGoogle Scholar
  108. 108.
    Wai PY, Kuo PC (2004) The role of Osteopontin in tumor metastasis. J Surg Res 121(2):228PubMedCrossRefGoogle Scholar
  109. 109.
    Suzuki M, Mose E, Galloy C, Tarin D (2007) Osteopontin gene expression determines spontaneous metastatic performance of orthotopic human breast cancer xenografts. Am J Pathol 171(2):682–692PubMedCrossRefGoogle Scholar
  110. 110.
    Chakraborty G, Jain S, Kundu GC (2008) Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms. Cancer Res 68(1):152–161PubMedCrossRefGoogle Scholar
  111. 111.
    Balic M, Lin H, Young L, Hawes D, Giuliano A, McNamara G, Datar RH, Cote RJ (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12(19):5615PubMedCrossRefGoogle Scholar
  112. 112.
    Draffin JE, McFarlane S, Hill A, Johnston PG, Waugh DJ (2004) CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells. Cancer Res 64(16):5702PubMedCrossRefGoogle Scholar
  113. 113.
    Tuck AB, Arsenault DM, O’Malley FP, Hota C, Ling MC, Wilson SM, Chambers AF (1999) Osteopontin induces increased invasiveness and plasminogen activator expression of human mammary epithelial cells. Oncogene 18(29):4237–4246PubMedCrossRefGoogle Scholar
  114. 114.
    Tuck AB, O’Malley FP, Singhal H, Harris JF, Tonkin KS, Kerkvliet N, Saad Z, Doig GS, Chambers AF (1998) Osteopontin expression in a group of lymph node negative breast cancer patients. Int J Cancer 79(5):502–508PubMedCrossRefGoogle Scholar
  115. 115.
    Tuck AB, O’Malley FP, Singhal H, Tonkin KS, Harris JF, Bautista D, Chambers AF (1997) Osteopontin and p53 expression are associated with tumor progression in a case of synchronous, bilateral, invasive mammary carcinomas. Arch Pathol Lab Med 121(6):578–584PubMedGoogle Scholar
  116. 116.
    Darash-Yahana M, Pikarsky E, Abramovitch R, Zeira E, Pal B, Karplus R, Beider K, Avniel S, Kasem S, Galun E et al (2004) Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J 18(11):1240–1242PubMedGoogle Scholar
  117. 117.
    Adwan H, Bauerle TJ, Berger MR (2004) Downregulation of osteopontin and bone sialoprotein II is related to reduced colony formation and metastasis formation of MDA-MB-231 human breast cancer cells. Cancer Gene Ther 11(2):109–120PubMedCrossRefGoogle Scholar
  118. 118.
    Schabath H, Runz S, Joumaa S, Altevogt P (2006) CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 119(Pt 2):314–325PubMedCrossRefGoogle Scholar
  119. 119.
    Li Z, Ding Y, Deng Y (1998) Mechanism of CD44V6 in human colorectal carcinoma metastasis. Zhonghua Yi Xue Za Zhi 78(10):729–732PubMedGoogle Scholar
  120. 120.
    Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K et al (2006) Highly purified CD44 + prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25(12):1696–1708PubMedCrossRefGoogle Scholar
  121. 121.
    Berner HS, Suo Z, Risberg B, Villman K, Karlsson MG, Nesland JM (2003) Clinicopathological associations of CD44 mRNA and protein expression in primary breast carcinomas. Histopathology 42(6):546–554PubMedCrossRefGoogle Scholar
  122. 122.
    van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536CrossRefGoogle Scholar
  123. 123.
    Gonen M (2009) Statistical aspects of gene signatures and molecular targets. Gastrointest Cancer Res 3(2):S19–S21PubMedGoogle Scholar
  124. 124.
    Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL (2008) CD44 + CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer 98(4):756–765PubMedCrossRefGoogle Scholar
  125. 125.
    Glinsky GV (2007) Stem cell origin of death-from-cancer phenotypes of human prostate and breast cancers. Stem Cell Rev 3(1):79–93PubMedCrossRefGoogle Scholar
  126. 126.
    Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44 + breast cancer-initiating cells to radiation. J Natl Cancer Inst 98(24):1777–1785PubMedCrossRefGoogle Scholar
  127. 127.
    Eriksson M, Guse K, Bauerschmitz G, Virkkunen P, Tarkkanen M, Tanner M, Hakkarainen T, Kanerva A, Desmond RA, Pesonen S et al (2007) Oncolytic adenoviruses kill breast cancer initiating CD44 + CD24-/low cells. Mol Ther 15(12):2088–2093PubMedCrossRefGoogle Scholar
  128. 128.
    Neyt M, Huybrechts M, Hulstaert F, Vrijens F, Ramaekers D (2008) Trastuzumab in early stage breast cancer: a cost-effectiveness analysis for Belgium. Health Policy 87(2):146PubMedCrossRefGoogle Scholar
  129. 129.
    Hall PS, Cameron DA (2009) Current perspective: trastuzumab. Eur J Cancer 45(1):12PubMedCrossRefGoogle Scholar
  130. 130.
    Emens LA (2005) Trastuzumab: targeted therapy for the management of HER-2/neu-overexpressing metastatic breast cancer. Am J Ther 12(3):243–253PubMedGoogle Scholar
  131. 131.
    Burstein HJ, Kuter I, Campos SM, Gelman RS, Tribou L, Parker LM, Manola J, Younger J, Matulonis U, Bunnell CA et al (2001) Clinical activity of trastuzumab and vinorelbine in women with HER2-overexpressing metastatic breast cancer. J Clin Oncol 19(10):2722PubMedGoogle Scholar
  132. 132.
    Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. NEJM 344(11):783PubMedCrossRefGoogle Scholar
  133. 133.
    Marty M, Cognetti F, Maraninchi D, Snyder R, Mauriac L, Tubiana-Hulin M, Chan S, Grimes D, Anton A, Lluch A et al (2005) Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol 23(19):4265PubMedCrossRefGoogle Scholar
  134. 134.
    Bedard PL, Cardoso F, Piccart-Gebhart MJ (2009) Stemming resistance to HER-2 targeted therapy. J Mammary Gland Biol Neoplasia 14(1):55–66PubMedCrossRefGoogle Scholar
  135. 135.
    Palyi-Krekk Z, Barok M, Isola J, Tammi M, Szollosi J, Nagy P (2007) Hyaluronan-induced masking of ErbB2 and CD44-enhanced trastuzumab internalisation in trastuzumab resistant breast cancer. Eur J Cancer 43(16):2423–2433PubMedCrossRefGoogle Scholar
  136. 136.
    Li Y, Zhang T, Schwartz SJ, Sun D (2009) New developments in Hsp90 inhibitors as anti-cancer therapeutics: Mechanisms, clinical perspective and more potential. Drug Resist Updates 12(1–2):17CrossRefGoogle Scholar
  137. 137.
    Smith JR, Workman P (2007) Targeting the cancer chaperone HSP90. Drug Disc Today 4(4):219CrossRefGoogle Scholar
  138. 138.
    Solit DB, Rosen N (2006) Hsp90: a novel target for cancer therapy. Curr Top Med Chem 6(11):1205–1214PubMedCrossRefGoogle Scholar
  139. 139.
    Solit DB, Chiosis G (2008) Development and application of Hsp90 inhibitors. Drug Discov Today 13(1–2):38–43PubMedCrossRefGoogle Scholar
  140. 140.
    Patel K, Piagentini M, Rascher A, Tian ZQ, Buchanan GO, Regentin R, Hu Z, Hutchinson CR, McDaniel R (2004) Engineered biosynthesis of geldanamycin analogs for Hsp90 inhibition. Chem Biol 11(12):1625–1633PubMedCrossRefGoogle Scholar
  141. 141.
    Sauvageot CM, Weatherbee JL, Kesari S, Winters SE, Barnes J, Dellagatta J, Ramakrishna NR, Stiles CD, Kung AL, Kieran MW et al (2008) Efficacy of the HSP90 inhibitor 17-AAG in human glioma cell lines and tumorigenic glioma stem cells. Neuro Oncol 11(2):109–121PubMedCrossRefGoogle Scholar
  142. 142.
    Zhang H, Burrows F (2004) Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med 82(8):488–499PubMedCrossRefGoogle Scholar
  143. 143.
    Powers MV, Workman P (2006) Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr Relat Cancer 13(1):S125–S135PubMedCrossRefGoogle Scholar
  144. 144.
    Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425(6956):407–410PubMedCrossRefGoogle Scholar
  145. 145.
    Workman P (2004) Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol Med 10(2):47–51PubMedCrossRefGoogle Scholar
  146. 146.
    Citri A, Kochupurakkal BS, Yarden Y (2004) The achilles heel of ErbB-2/HER2: regulation by the Hsp90 chaperone machine and potential for pharmacological intervention. Cell Cycle 3(1):51–60PubMedGoogle Scholar
  147. 147.
    Citri A, Gan J, Mosesson Y, Vereb G, Szollosi J, Yarden Y (2004) Hsp90 restrains ErbB-2/HER2 signalling by limiting heterodimer formation. EMBO Rep 5(12):1165–1170PubMedCrossRefGoogle Scholar
  148. 148.
    Smith-Jones PM, Solit DB, Akhurst T, Afroze F, Rosen N, Larson SM (2004) Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 22(6):701–706PubMedCrossRefGoogle Scholar
  149. 149.
    Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N (2002) Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 277(42):39858–39866PubMedCrossRefGoogle Scholar
  150. 150.
    Barksdale KA, Bijur GN (2009) The basal flux of Akt in the mitochondria is mediated by heat shock protein 90. J Neurochem 108(5):1289–1299PubMedCrossRefGoogle Scholar
  151. 151.
    Sato S, Fujita N, Tsuruo T (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci USA 97(20):10832–10837PubMedCrossRefGoogle Scholar
  152. 152.
    Rodina A, Vilenchik M, Moulick K, Aguirre J, Kim J, Chiang A, Litz J, Clement CC, Kang Y, She Y et al (2007) Selective compounds define Hsp90 as a major inhibitor of apoptosis in small-cell lung cancer. Nat Chem Biol 3(8):498–507PubMedCrossRefGoogle Scholar
  153. 153.
    Burrows F, Zhang H, Kamal A (2004) Hsp90 activation and cell cycle regulation. Cell Cycle 3(12):1530–1536PubMedGoogle Scholar
  154. 154.
    Theodoraki MA, Kunjappu M, Sternberg DW, Caplan AJ (2007) Akt shows variable sensitivity to an Hsp90 inhibitor depending on cell context. Exp Cell Res 313(18):3851–3858PubMedCrossRefGoogle Scholar
  155. 155.
    Yun BG, Matts RL (2005) Differential effects of Hsp90 inhibition on protein kinases regulating signal transduction pathways required for myoblast differentiation. Exp Cell Res 307(1):212–223PubMedCrossRefGoogle Scholar
  156. 156.
    Sato N, Yamamoto T, Sekine Y, Yumioka T, Junicho A, Fuse H, Matsuda T (2003) Involvement of heat-shock protein 90 in the interleukin-6-mediated signaling pathway through STAT3. Biochem Biophys Res Commun 300(4):847–852PubMedCrossRefGoogle Scholar
  157. 157.
    Taldone T, Gozman A, Maharaj R, Chiosis G (2008) Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr Opin Pharmacol 8(4):370–374PubMedCrossRefGoogle Scholar
  158. 158.
    Jensen MR, Schoepfer J, Radimerski T, Massey A, Guy CT, Brueggen J, Quadt C, Buckler A, Cozens R, Drysdale MJ et al (2008) NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res 10(2):R33PubMedCrossRefGoogle Scholar
  159. 159.
    Tsutsumi S, Scroggins B, Koga F, Lee MJ, Trepel J, Felts S, Carreras C, Neckers L (2008) A small molecule cell-impermeant Hsp90 antagonist inhibits tumor cell motility and invasion. Oncogene 27(17):2478–2487PubMedCrossRefGoogle Scholar
  160. 160.
    Sydor JR, Normant E, Pien CS, Porter JR, Ge J, Grenier L, Pak RH, Ali JA, Dembski MS, Hudak J et al (2006) Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. Proc Natl Acad Sci USA 103(46):17408–17413PubMedCrossRefGoogle Scholar
  161. 161.
    Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM, Eberhart CG (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66(15):7445–7452PubMedCrossRefGoogle Scholar
  162. 162.
    Kim HL, Cassone M, Otvos L Jr, Vogiatzi P (2008) HIF-1alpha and STAT3 client proteins interacting with the cancer chaperone Hsp90: therapeutic considerations. Cancer Biol Ther 7(1):10–14PubMedCrossRefGoogle Scholar
  163. 163.
    Prinsloo E, Setati MM, Longshaw VM, Blatch GL (2009) Chaperoning stem cells: a role for heat shock proteins in the modulation of stem cell self-renewal and differentiation? BioEssays 31(4):370–377PubMedCrossRefGoogle Scholar
  164. 164.
    Sain N, Krishnan B, Ormerod MG, De Rienzo A, Liu WM, Kaye SB, Workman P, Jackman AL (2006) Potentiation of paclitaxel activity by the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin in human ovarian carcinoma cell lines with high levels of activated AKT. Mol Cancer Ther 5(5):1197–1208PubMedCrossRefGoogle Scholar
  165. 165.
    Zhang R, Luo D, Miao R, Bai L, Ge Q, Sessa WC, Min W (2005) Hsp90-Akt phosphorylates ASK1 and inhibits ASK1-mediated apoptosis. Oncogene 24(24):3954–3963PubMedCrossRefGoogle Scholar
  166. 166.
    Chen JX, Meyrick B (2004) Hypoxia increases Hsp90 binding to eNOS via PI3 K-Akt in porcine coronary artery endothelium. Lab Invest 84(2):182–190PubMedCrossRefGoogle Scholar
  167. 167.
    Solit DB, Basso AD, Olshen AB, Scher HI, Rosen N (2003) Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res 63(9):2139–2144PubMedGoogle Scholar
  168. 168.
    Grammatikakis N, Lin JH, Grammatikakis A, Tsichlis PN, Cochran BH (1999) p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. Mol Cell Biol 19(3):1661–1672PubMedGoogle Scholar
  169. 169.
    Piatelli MJ, Doughty C, Chiles TC (2002) Requirement for a hsp90 chaperone-dependent MEK1/2-ERK pathway for B cell antigen receptor-induced cyclin D2 expression in mature B lymphocytes. J Biol Chem 277(14):12144–12150PubMedCrossRefGoogle Scholar
  170. 170.
    Pratt WB (1997) The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annu Rev Pharmacol Toxicol 37:297–326PubMedCrossRefGoogle Scholar
  171. 171.
    Schulte TW, Blagosklonny MV, Ingui C, Neckers L (1995) Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J Biol Chem 270(41):24585–24588PubMedCrossRefGoogle Scholar
  172. 172.
    She QB, Solit D, Basso A, Moasser MM (2003) Resistance to gefitinib in PTEN-null HER-overexpressing tumor cells can be overcome through restoration of PTEN function or pharmacologic modulation of constitutive phosphatidylinositol 3’-kinase/Akt pathway signaling. Clin Cancer Res 9(12):4340–4346PubMedGoogle Scholar
  173. 173.
    Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC (2008) PI3 K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 22(4):436–448PubMedCrossRefGoogle Scholar
  174. 174.
    Lee JS, Gil JE, Kim JH, Kim TK, Jin X, Oh SY, Sohn YW, Jeon HM, Park HJ, Park JW et al (2008) Brain cancer stem-like cell genesis from p53-deficient mouse astrocytes by oncogenic Ras. Biochem Biophys Res Commun 365(3):496–502PubMedCrossRefGoogle Scholar
  175. 175.
    Hostein I, Robertson D, DiStefano F, Workman P, Clarke PA (2001) Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res 61(10):4003–4009PubMedGoogle Scholar
  176. 176.
    Massard C, Deutsch E, Soria JC (2006) Tumour stem cell-targeted treatment: elimination or differentiation. Ann Oncol 17(11):1620–1624PubMedCrossRefGoogle Scholar
  177. 177.
    Xu Q, Yuan X, Tunici P, Liu G, Fan X, Xu M, Hu J, Hwang JY, Farkas DL, Black KL et al (2009) Isolation of tumour stem-like cells from benign tumours. Br J Cancer 101(2):303–311PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Jessica C. Lawson
    • 1
  • Gregory L. Blatch
    • 1
  • Adrienne L. Edkins
    • 1
  1. 1.Department of Biochemistry, Microbiology and BiotechnologyRhodes UniversityGrahamstownSouth Africa

Personalised recommendations