MUC1* is a determinant of trastuzumab (Herceptin) resistance in breast cancer cells

  • Shawn P. Fessler
  • Mark T. Wotkowicz
  • Sanjeev K. Mahanta
  • Cynthia Bamdad
Preclinical study

Abstract

In the United States, 211,000 women are diagnosed each year with breast cancer. Of the 42,000 breast cancer patients who overexpress the HER2 growth factor receptor, <35% are responsive to treatment with the HER2-disabling antibody, called trastuzumab (Herceptin). Despite those statistics, women diagnosed with breast cancer are now tested to determine how much of this important growth factor receptor is present in their tumor because patients whose treatment includes trastuzumab are three-times more likely to survive for at least 5 years and are two-times more likely to survive without a cancer recurrence. Unfortunately, even among the group whose cancers originally respond to trastuzumab, 25% of the metastatic breast cancer patients acquire resistance to trastuzumab within the first year of treatment. Follow-on “salvage” therapies have prolonged life for this group but have not been curative. Thus, it is critically important to understand the mechanisms of trastuzumab resistance and develop therapies that reverse or prevent it. Here, we report that molecular analysis of a cancer cell line that was induced to acquire trastuzumab resistance showed a dramatic increase in the amount of the cleaved form of the MUC1 protein, called MUC1*. We recently reported that MUC1* functions as a growth factor receptor on cancer cells and on embryonic stem cells. Here, we show that treating trastuzumab-resistant cancer cells with a combination of MUC1* antagonists and trastuzumab, reverses the drug resistance. Further, HER2-positive cancer cells that are intrinsically resistant to trastuzumab became trastuzumab-sensitive when treated with MUC1* antagonists and trastuzumab. Additionally, we found that tumor cells that had acquired Herceptin resistance had also acquired resistance to standard chemotherapy agents like Taxol, Doxorubicin, and Cyclophosphamide. Acquired resistance to these standard chemotherapy drugs was also reversed by combined treatment with the original drug plus a MUC1* inhibitor.

Keywords

Breast cancer Herceptin Drug resistance MUC1 Chemotherapy Trastuzumab 

References

  1. 1.
    Slamon DJ, Godolphin W, Jones LA et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712. doi:10.1126/science.2470152 CrossRefPubMedGoogle Scholar
  2. 2.
    Sliwkowski MX (2003) Ready to partner. Nat Struct Biol 10:158–159. doi:10.1038/nsb0303-158 CrossRefPubMedGoogle Scholar
  3. 3.
    Moasser MM (2007) The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26:6469–6487. doi:10.1038/sj.onc.1210477 CrossRefPubMedGoogle Scholar
  4. 4.
    Hellyer NJ, Kim MS, Koland JG (2001) Heregulin-dependent activation of phosphoinositide 3-kinase and Akt via the ErbB2/ErbB3 co-receptor. J Biol Chem 276:42153–42161. doi:10.1074/jbc.M102079200 CrossRefPubMedGoogle Scholar
  5. 5.
    Cobleigh MA, Vogel CL, Tripathy D et al (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2 overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17:2639–2648PubMedGoogle Scholar
  6. 6.
    Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792. doi:10.1056/NEJM200103153441101 CrossRefPubMedGoogle Scholar
  7. 7.
    Marty M, Cognetti F, Maraninchi D et al (2005) Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol 23:4265–4274. doi:10.1200/JCO.2005.04.173 CrossRefPubMedGoogle Scholar
  8. 8.
    Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684. doi:10.1056/NEJMoa052122 CrossRefPubMedGoogle Scholar
  9. 9.
    Burstein HJ, Harris LN, Gelman R et al (2003) Preoperative therapy with trastuzumab and paclitaxel followed by sequential adjuvant Doxorubicin/cyclophosphamide for HER2 overexpressing stage II or III breast cancer: a pilot study. J Clin Oncol 21:46–53. doi:10.1200/JCO.2003.03.124 CrossRefPubMedGoogle Scholar
  10. 10.
    Vogel CL, Cobleigh MA, Tripathy D et al (2002) Efficacy and safety of trastuzumab as a single agent in first line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20:719–726. doi:10.1200/JCO.20.3.719 CrossRefPubMedGoogle Scholar
  11. 11.
    Montemurro F, Redana S, Nolè F et al (2008) Vinorelbine-based salvage therapy in HER2-positive metastatic breast cancer patients progressing during trastuzumab-containing regimens: a retrospective study. BMC Cancer 8:209–217. doi:10.1186/1471-2407-8-209 CrossRefPubMedGoogle Scholar
  12. 12.
    Geyer CE, Forster J, Lindquist D et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743. doi:10.1056/NEJMoa064320 CrossRefPubMedGoogle Scholar
  13. 13.
    Paik S, Hazan R, Fisher ER et al (1990) Pathologic findings from the national surgical adjuvant breast and bowel project: prognostic significance of erbB-2 protein overexpression in primary breast cancer. J Clin Oncol 8:103–112PubMedGoogle Scholar
  14. 14.
    Paik S, Bryant J, Tan-Chiu E et al (2000) HER2 and choice of adjuvant chemotherapy for invasive breast cancer: national surgical adjuvant breast and bowel project protocol B-15. J Natl Cancer Inst 92:1991–1998. doi:10.1093/jnci/92.24.1991 CrossRefPubMedGoogle Scholar
  15. 15.
    Yamauchi H, O’Neill A, Gelman R et al (1997) Prediction of response to antiestrogen therapy in advanced breast cancer patients by pretreatment circulating levels of extracellular domain of HER-2/c-neu protein. J Clin Oncol 15:2518–2525PubMedGoogle Scholar
  16. 16.
    Harris L, Luftner D, Jager W et al (1999) c-erbB-2 in serum of patients with breast cancer. Int J Biol Markers 14:8–15PubMedGoogle Scholar
  17. 17.
    Chan CT, Metz MZ, Kane SE (2005) Differential sensitivities of trastuzumab (herceptin)-resistant human breast cancer cells to phosphoinositide-3 kinase (PI-3 K) and epidermal growth factor receptor (EGFR) kinase inhibitors. Breast Cancer Res Treat 91:187–201. doi:10.1007/s10549-004-7715-1 CrossRefPubMedGoogle Scholar
  18. 18.
    Nagy P, Friedländer E, Tanner M et al (2005) Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res 65:473–482PubMedGoogle Scholar
  19. 19.
    Nahta R, Hung MC, Esteva FJ (2004) The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 64:2343–2346. doi:10.1158/0008-5472.CAN-03-3856 CrossRefPubMedGoogle Scholar
  20. 20.
    Nahta R, Yuan LXH, Zhang B et al (2005) Insulin-like growth factor-1 receptor/human epidermal growth factor receptor heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 65:11118–11127. doi:10.1158/0008-5472.CAN-04-3841 CrossRefPubMedGoogle Scholar
  21. 21.
    Ritter CA, Perez-Torres M, Rinehart C et al (2007) Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 13:4909–4919. doi:10.1158/1078-0432.CCR-07-0701 CrossRefPubMedGoogle Scholar
  22. 22.
    Yin L, Huang L, Kufe D (2004) MUC1 oncoprotein activates the FOXO3 a transcription factor in a survival response to oxidative stress. J Biol Chem 279:45721–45727. doi:10.1074/jbc.M408027200 CrossRefPubMedGoogle Scholar
  23. 23.
    Raina D, Kharbanda S, Kufe D (2004) The MUC1 oncoprotein activates the anti-apoptotic phosphoinositide 3-kinase/Akt and Bcl-xL pathways in rat 3Y1 fibroblasts. J Biol Chem 279:20607–20612. doi:10.1074/jbc.M310538200 CrossRefPubMedGoogle Scholar
  24. 24.
    Ren J, Agata N, Chen D et al (2004) Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents. Cancer Cell 5:163–175. doi:10.1016/S1535-6108(04)00020-0 CrossRefPubMedGoogle Scholar
  25. 25.
    Tsutsumida H, Swanson BJ, Singh PK et al (2006) RNA interference suppression of MUC1 reduces the growth rate and metastatic phenotype of human pancreatic cancer cells. Clin Cancer Res 12:2976–2987. doi:10.1158/1078-0432.CCR-05-1197 CrossRefPubMedGoogle Scholar
  26. 26.
    Li Y, Liu D, Chen D et al (2003) Human DF3/MUC1 carcinoma-associated protein functions as an oncogene. Oncogene 22:6107–6110. doi:10.1038/sj.onc.1206732 CrossRefPubMedGoogle Scholar
  27. 27.
    Mahanta S, Fessler SP, Park J, Bamdad C (2008) A minimal fragment of MUC1 mediates growth of cancer cells. PLoS One 3:e2054–e2065. doi:10.1371/journal.pone.0002054 CrossRefPubMedGoogle Scholar
  28. 28.
    Hikita ST, Kosik KS, Clegg DO, Bamdad C (2008) MUC1* mediates the growth of human pluripotent stem cells. PLoS One 3:e3312–e3325. doi:10.1371/journal.pone.0003312 CrossRefPubMedGoogle Scholar
  29. 29.
    Scotti ML, Langenheim JF, Tomblyn S et al (2008) Additive effects of a prolactin receptor antagonist, G129R, and herceptin on inhibition of HER2-overexpressing breast cancer cells. Breast Cancer Res Treat 111:241–250. doi:10.1007/s10549-007-9789-z CrossRefPubMedGoogle Scholar
  30. 30.
    Kauraniemi P, Hautaniemi S, Autio R et al (2004) Effects of herceptin treatment on global gene expression patterns in HER2-amplified and nonamplified breast cancer cell lines. Oncogene 23:1010–1013. doi:10.1038/sj.onc.1207200 CrossRefPubMedGoogle Scholar
  31. 31.
    Luistro LLIII, Rosinski JA, Bian H et al (2005) Herceptin-refractory ovarian carcinoma cells differentially express genes involved in angiogenesis, invasion and metastasis. Proc Amer Assoc Cancer Res 46:5085 AbstractGoogle Scholar
  32. 32.
    Lapointe J, Li C, Higgins JP et al (2004) Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 101:811–816. doi:10.1073/pnas.0304146101 CrossRefPubMedGoogle Scholar
  33. 33.
    Lesperance S, Popa I, Bachvarova M et al (2006) Gene expression profiling of paired ovarian tumors obtained prior to and following adjuvant chemotherapy: molecular signatures of chemoresistant tumors. Int J Oncol 29:5–24Google Scholar
  34. 34.
    Li Y, Yu W-H, Ren J et al (2003) Heregulin targets gamma-catenin to the nucleolus by a mechanism dependent on the DF3/MUC1 oncoprotein. Mol Cancer Res 1:765–775PubMedGoogle Scholar
  35. 35.
    Nahta R, Esteva FJ (2007) Trastuzumab; triumphs and tribulations. Oncogene 26:3637–3643. doi:10.1038/sj.onc.1210379 CrossRefPubMedGoogle Scholar
  36. 36.
    Valabrega G, Montemurro F, Aglietta M (2007) Trastuzumab: mechanism of action, resistance and future perspectives in Her2-overexpressing breast cancer. Ann Oncol 18:977–984. doi:10.1093/annonc/mdl475 CrossRefPubMedGoogle Scholar
  37. 37.
    Vogel CL, Cobleigh MA, Tripathy D et al (2001) First-line herceptin monotherapy in metastatic breast cancer. Oncol 61:37–42. doi:10.1159/000055400 CrossRefGoogle Scholar
  38. 38.
    Price-Schiavi SA, Jepson S, Li P et al (2002) Rat MUC4 (sialomucin complex) reduces binding of anti-ErbB2 antibody to tumor cell surfaces, a potential mechanism for herceptin resistance. Int J Cancer 99:783–791. doi:10.1002/ijc.10410 CrossRefPubMedGoogle Scholar
  39. 39.
    Harris LN, You F, Schnitt SJ et al (2007) Predictors of resistance to preoperative trastuzumab and vinorelbine for Her2-positive early breast cancer. Clin Cancer Res 13:1198–1207. doi:10.1158/1078-0432.CCR-06-1304 CrossRefPubMedGoogle Scholar
  40. 40.
    Lu Y, Zi H, Zhao D et al (2001) Insulin like growth factor-1 receptor signaling and resistance to trastuzumab (herceptin). J Natl Cancer Inst 93:1852–1857. doi:10.1093/jnci/93.24.1852 CrossRefPubMedGoogle Scholar
  41. 41.
    Shattuck JL, Miller JK, Carraway KLIII et al (2008) Met receptor contributes to trastuzumab resistance of Her2-overexpresssing breast cancer cells. Cancer Res 68:1471–1477. doi:10.1158/0008-5472.CAN-07-5962 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Shawn P. Fessler
    • 1
  • Mark T. Wotkowicz
    • 1
  • Sanjeev K. Mahanta
    • 1
  • Cynthia Bamdad
    • 1
  1. 1.Minerva BiotechnologiesWalthamUSA

Personalised recommendations